Impact of Sauropod Dinosaurs on Lagoonal Substrates in the Broome Sandstone (Lower Cretaceous), Western Australia

Existing knowledge of the tracks left by sauropod dinosaurs (loosely ‘brontosaurs’) is essentially two-dimensional, derived mainly from footprints exposed on bedding planes, but examples in the Broome Sandstone (Early Cretaceous) of Western Australia provide a complementary three-dimensional picture showing the extent to which walking sauropods could deform the ground beneath their feet. The patterns of deformation created by sauropods traversing thinly-stratified lagoonal deposits of the Broome Sandstone are unprecedented in their extent and structural complexity. The stacks of transmitted reliefs (underprints or ghost prints) beneath individual footfalls are nested into a hierarchy of deeper and more inclusive basins and troughs which eventually attain the size of minor tectonic features. Ultimately the sauropod track-makers deformed the substrate to such an extent that they remodelled the topography of the landscape they inhabited. Such patterns of substrate deformation are revealed by investigating fragmentary and eroded footprints, not by the conventional search for pristine footprints on intact bedding planes. For that reason it is not known whether similar patterns of substrate deformation might occur at sauropod track-sites elsewhere in the world.

Cretaceous sauropod tracks and their potential rack-makers.  A, silhouette of Diamantinasaurus, a titanosaur or related sauropod from the Winton Formation (Albian-Cenomanian) of Queensland (after Hocknull et al. [40]); scale bar indicates 1 metre. B, silhouette of Brachiosaurus (after Farlow [19]); undescribed skeletal fragments of a similar sauropod are also known to occur in the Rolling Downs Group of Queensland; scale bar indicates 1 metre. C, right manus-pes couple (at right) and D, part of a trackway (at left), of Brontopodus birdi, a distinctive form of sauropod track from the Trinity Group (Early Cretaceous, Comanchean) of Texas and Arkansas; after Farlow et al. [38]); long suspected to be the track of the contemporary brachiosaur Pleurocoelus, but more recently attributed [58] to Paluxysaurus, a relative of Brachiosaurus; length of the pes print ranges from 40–50 cm to more than 100 cm. E, a sample of sauropod tracks from the Broome Sandstone, Western Australia, to illustrate their diversity in size and shape; three isolated pes prints (at left) and three manus-pes couple (at right) are shown at uniform scale; scale bar (extreme left) is 1 metre. doi:10.1371/journal.pone.0036208.g002

Cretaceous sauropod tracks and their potential rack-makers.
A, silhouette of Diamantinasaurus, a titanosaur or related sauropod from the Winton Formation (Albian-Cenomanian) of Queensland (after Hocknull et al. [40]); scale bar indicates 1 metre. B, silhouette of Brachiosaurus (after Farlow [19]); undescribed skeletal fragments of a similar sauropod are also known to occur in the Rolling Downs Group of Queensland; scale bar indicates 1 metre. C, right manus-pes couple (at right) and D, part of a trackway (at left), of Brontopodus birdi, a distinctive form of sauropod track from the Trinity Group (Early Cretaceous, Comanchean) of Texas and Arkansas; after Farlow et al. [38]); long suspected to be the track of the contemporary brachiosaur Pleurocoelus, but more recently attributed [58] to Paluxysaurus, a relative of Brachiosaurus; length of the pes print ranges from 40–50 cm to more than 100 cm. E, a sample of sauropod tracks from the Broome Sandstone, Western Australia, to illustrate their diversity in size and shape; three isolated pes prints (at left) and three manus-pes couple (at right) are shown at uniform scale; scale bar (extreme left) is 1 metre.
doi:10.1371/journal.pone.0036208.g002

Variation in colour of Broome Sandstone and its sauropod dinosaur tracks.  A, freshly-exposed and conspicuous example of a pes (hindfoot) print; the thinly layered sediments are characteristic of lagoonal substrates in the Broome Sandstone, though the vivid coloration is often subdued by weathering; scale is 1 ft (c. 31 cm) wooden ruler. B, pes print impressed in, and filled by, blue-grey siltstone; examples such as this are difficult to detect when sea-water has evaporated from the erosion pits along the interface between cast and mould; scale indicated by camera lens cap (diameter 6.7 cm) at lower left. doi:10.1371/journal.pone.0036208.g003

Variation in colour of Broome Sandstone and its sauropod dinosaur tracks.
A, freshly-exposed and conspicuous example of a pes (hindfoot) print; the thinly layered sediments are characteristic of lagoonal substrates in the Broome Sandstone, though the vivid coloration is often subdued by weathering; scale is 1 ft (c. 31 cm) wooden ruler. B, pes print impressed in, and filled by, blue-grey siltstone; examples such as this are difficult to detect when sea-water has evaporated from the erosion pits along the interface between cast and mould; scale indicated by camera lens cap (diameter 6.7 cm) at lower left.
doi:10.1371/journal.pone.0036208.g003

Series of diagrams explaining origin of the specimen shown in Figure 8B.  A, sauropod footprint impressed into substrate; the footprint, a natural mould (concave epirelief) is bordered by a raised rim of displaced sediment. B, the footprint mould lies at the centre of a larger depression, apparently a zone of subsidence or down-warping created by the impact of the track-maker’s foot. C, the area is buried by an influx of sediment which fills the footprint mould to form the natural cast. D, much later, after lithification, the two layers of rock are separated by natural breakage and erosion. E, the upper layer is overturned by waves to expose its convex lower surface with the footprint cast surrounded by a gutter. Smaller features in Figure 8B (manus print and ripple-marks) are omitted for the sake of clarity. doi:10.1371/journal.pone.0036208.g009

Series of diagrams explaining origin of the specimen shown in Figure 8B.
A, sauropod footprint impressed into substrate; the footprint, a natural mould (concave epirelief) is bordered by a raised rim of displaced sediment. B, the footprint mould lies at the centre of a larger depression, apparently a zone of subsidence or down-warping created by the impact of the track-maker’s foot. C, the area is buried by an influx of sediment which fills the footprint mould to form the natural cast. D, much later, after lithification, the two layers of rock are separated by natural breakage and erosion. E, the upper layer is overturned by waves to expose its convex lower surface with the footprint cast surrounded by a gutter. Smaller features in Figure 8B (manus print and ripple-marks) are omitted for the sake of clarity.
doi:10.1371/journal.pone.0036208.g009

Citation: Thulborn T (2012) Impact of Sauropod Dinosaurs on Lagoonal Substrates in the Broome Sandstone (Lower Cretaceous), Western Australia. PLoS ONE 7(5): e36208. doi:10.1371/journal.pone.0036208

Editor: Andrew A. Farke, Raymond M. Alf Museum of Paleontology, United States of America

 

 

 

 

 

 

You can leave a response, or trackback from your own site.

Leave a Reply