@WFS,World Fossil Society, Athira, Riffin T Sajeev, Russel T Sajeev
Ancient fossil beans the size of modern limes may provide new insight into the evolution of today’s diverse Southeast Asian and Australian rainforests, according to Penn State researchers who identified the plants.
The researchers determined that the fossils, which are among the largest seeds in the fossil record, represent a now-extinct legume genus that lived in Southeast Asia and was closely related to modern Castanospermum, known as the black bean tree. This tree is only found today in the coastal rainforests of northern Australia and neighboring islands.
The study, conducted in collaboration with paleontologists from Indonesia, Canada, the United Kingdom, and elsewhere in the United States, was recently published in the International Journal of Plant Sciences.
Insights from Eocene-Era Fossils
The fossils, discovered in Indonesian Borneo, date back to the Eocene period approximately 34 to 40 million years ago. They suggest that the ancestors of the black bean tree migrated from Asia into Australia during the tectonic-plate collision that brought the land masses together and allowed for an exchange of plants and animals between the continents. The collision of the Southeast Asian and Australian tectonic plates, which began about 20 million years ago and continues today, led to a large exchange of plant and animal species between the landmasses, the scientists said.
The findings provide the first macrofossil evidence of a plant lineage moving from Asia into Australia after the Asia-Australia tectonic collision, the researchers said. The fossils are also the oldest definite fossil legumes — the bean family — from the Malay Archipelago and the first fossil record anywhere of plants related to the black bean tree.
“These fossil seeds suggest that the ancient relatives of Castanospermum migrated into Australia from Southeast Asia during the tectonic collision event and later went extinct in Asia,” said Edward Spagnuolo, a doctoral student in the Department of Geosciences at Penn State and lead author of the study.
Overcoming Challenges in Fossil Collection
These findings challenge most of the existing direct macrofossil evidence for plant migrations, which represents lineages that moved from Australia into Asia. According to the scientists, the lack of direct evidence for movement from Asia to Australia is at least partially due to a poor plant fossil record in the Malay Archipelago, which includes the Philippines, Indonesia, East Timor, Papua New Guinea, and parts of Malaysia.