Visualizing the Past: Nondestructive Imaging of Ancient Fossils

By integrating high-resolution X-ray imaging (termed microCT), 3D image segmentation, and computer animation, a new study conducted by Carole Gee at the University of Bonn, Germany, demonstrates the visualization of fossils without destroying the material. Traditional techniques, such as thin-sectioning, require investigators to physically cut up the fossil in order to observe internal structures. Dr. Gee, however, has now successfully applied microCT to visualize silicified conifer seed cones as old as 150 million years without cutting, sawing, or damaging the specimens in any way.

Well-preserved, informative plant fossils are few and far between. Specimens with reproductive organs are especially scarce but are invaluable to understanding plant evolution and ancient diversity. When such fossils are unearthed, they are lucky finds and often only single specimens are present.

“Because each specimen is precious, the main goal of this research was to study the internal structure of fossil conifer seed cones without destroying or damaging them,” explains Gee.

Using this technique, X-ray images, similar to those used in the medical field, are captured, providing virtual cross-sections of the specimen, without ever cutting into the sample. These images are then combined, producing a 3D reconstruction. This study, along with computer animations and detailed figures presenting microCT imaging, is freely available for viewing in the November issue of Applications in Plant Sciences.

This shows fossil and recent araucarian cones sectioned in 2D by microCT (A, D, G), and showing one segmented spiral or row of seeds or seed locules produced by 3D imaging (B, C, E, F, H, I). The seed spirals or rows in A, D, and G are delineated by red arrows. Yellow lines in B, C, E, F, H, and I represent the polar axis through the cones. Scale bars = 1 cm. (A–C) Fossil cone of Araucaria sp. from Wyoming (specimen no. CG066, Flynn Collection). (A) Transverse section 294/1012; diameter = ca. 6 cm. (B) Lateral view showing the 360° revolution of a single seed spiral. (C) Oblique distal view. (D–F) Fossil cone of Araucaria mirabilis from the Middle Jurassic of Argentina (specimen no. K5640, Museum für Naturkunde Chemnitz collection). (D) Transverse section 280/933; diameter = ca. 7.5 cm. (E) Lateral view showing the 180° revolution of a single seed spiral. (F) Oblique distal view. (G–I) Recent cone of Araucaria araucana from the Economic Botany Garden, University of Bonn, Germany. (G) Transverse section 469/876; diameter = ca. 17 cm. (H) Lateral view showing the vertical (nonspiral) arrangement of a row of seeds. (I) Oblique distal view. (Credit: Image credit Carole T. Gee. From Gee, C. T. 2013. Applying microCT and 3D visualization to Jurassic silicified conifer seed cones: A virtual advantage over thin-sectioning. Applications in Plant Sciences 1(11): 1300039. doi:10.3732/apps.1300039.)

This shows fossil and recent araucarian cones sectioned in 2D by microCT (A, D, G), and showing one segmented spiral or row of seeds or seed locules produced by 3D imaging (B, C, E, F, H, I). The seed spirals or rows in A, D, and G are delineated by red arrows. Yellow lines in B, C, E, F, H, and I represent the polar axis through the cones. Scale bars = 1 cm. (A–C) Fossil cone of Araucaria sp. from Wyoming (specimen no. CG066, Flynn Collection). (A) Transverse section 294/1012; diameter = ca. 6 cm. (B) Lateral view showing the 360° revolution of a single seed spiral. (C) Oblique distal view. (D–F) Fossil cone of Araucaria mirabilis from the Middle Jurassic of Argentina (specimen no. K5640, Museum für Naturkunde Chemnitz collection). (D) Transverse section 280/933; diameter = ca. 7.5 cm. (E) Lateral view showing the 180° revolution of a single seed spiral. (F) Oblique distal view. (G–I) Recent cone of Araucaria araucana from the Economic Botany Garden, University of Bonn, Germany. (G) Transverse section 469/876; diameter = ca. 17 cm. (H) Lateral view showing the vertical (nonspiral) arrangement of a row of seeds. (I) Oblique distal view. (Credit: Image credit Carole T. Gee. From Gee, C. T. 2013. Applying microCT and 3D visualization to Jurassic silicified conifer seed cones: A virtual advantage over thin-sectioning. Applications in Plant Sciences 1(11): 1300039. doi:10.3732/apps.1300039.)

In the study, Gee demonstrates how this technique allows the observation of internal features such as seeds, vascular tissue, and cone scales. Furthermore, by adding artificial color to highlight certain structures or tissues, such as a row of seeds within a cone, the natural pattern of growth was evident. As Gee observes, “It’s amazing to visualize internal structures of dinosaur-aged fossils in such great detail without cutting up the fossil or damaging them at all.”

It was then possible to identify the fossils as belonging to three distinct families: Pinaceae — the pine family, Araucariaceae — a family of coniferous trees currently found only in the Southern Hemisphere, and Cheirolepidiaceae — a now-extinct family of conifers known only from the Mesozoic.

“This tells us that 150 million years ago, the ancient forests of western North America consisted of members of these three families. The fossil cones of the Araucariaceae from Utah confirm that this family, which now grows naturally in Australasia and South America, once had a worldwide distribution,” notes Gee.

Dr. Gee hopes this study will provide researchers with an alternative to traditional techniques such as thin-sectioning, which often leave the fossil completely destroyed. She concludes, “MicroCT was very effective in showing internal structure of several types of fossil cones and worked extremely well on recent specimens. Coupled with 3D reconstruction techniques in color, microCT and image segmentation can become powerful tools in the study of fossil plants and will certainly become more commonplace in paleobotany and botany, as it allows us to visualize the internal tissues of specimens without damaging them in the least.”

Scientists Digitally Reconstruct Giant Steps Taken by Dinosaurs for the First Time

The Manchester team, working with scientists in Argentina, were able to laser scan a 40 metre-long skeleton of the vast Cretaceous Argentinosaurus dinosaur. Then using an advanced computer modeling technique involving the equivalent of 30,000 desktop computers they recreated its walking and running movements and tested its locomotion ability tested for the very first time.

The study, published in PLOS ONE, provides the first ever ‘virtual’ trackway of the dinosaur and disproves previous suggestions that the animal was inflated in size and could not have walked.

This is the 40-meter original skeleton, Argentinosaurus huinculensis reconstruction at Museo Municipal Carmen Funes, Plaza Huincul, Neuquén, Argentina. (Credit: Dr. Bill Sellers, The University of Manchester)

This is the 40-meter original skeleton, Argentinosaurus huinculensis reconstruction at Museo Municipal Carmen Funes, Plaza Huincul, Neuquén, Argentina. (Credit: Dr. Bill Sellers, The University of Manchester)

Dr Bill Sellers, lead researcher on the project from the University’s Faculty of Life Sciences, said: “If you want to work out how dinosaurs walked, the best approach is computer simulation. This is the only way of bringing together all the different strands of information we have on this dinosaur, so we can reconstruct how it once moved.”

Dr Lee Margetts, who also worked on the project, said: “We used the equivalent of 30,000 desktop computers to allow Argentinosaurus to take its first steps in over 94 million years. “The new study clearly demonstrates the dinosaur was more than capable of strolling across the Cretaceous planes of what is now Patagonia, South America.”

The team of scientists included Dr Rodolfo Coria from Carmen Funes Museum, Plaza Huincal, Argentina, who was behind the first physical reconstruction of this dinosaur that takes its name from the country where it was found. The dinosaur was so big it was named after a whole country.

Dr Phil Manning, from Manchester who contributed to the paper, said: “It is frustrating there was so little of the original dinosaur fossilized, making any reconstruction difficult. The digitization of such vast dinosaur skeletons using laser scanners brings Walking with Dinosaurs to life…this is science not just animation.”

Dr Sellers uses his own software (Gaitsym) to investigate locomotion both living and extinct animals have to overcome.

“The important thing is that these animals are not like any animal alive today and so we can’t just copy a modern animal,” he explained. “Our machine learning system works purely from the information we have on the dinosaur and predicts the best possible movement patterns.”

The dinosaur weighed 80 tonnes and the simulation shows that it would have reached just over 2 m/s — about 5 mph.

Dr Sellers said the research was important for understanding more about musculoskeletal systems and for developing robots.

He added: “All vertebrates from humans to fish share the same basic muscles, bones and joints. To understand how these function we can compare how they are used in different animals, and the most interesting are often those at extremes. Argentinosaurus is the biggest animal that ever walked on the surface of the Earth and understanding how it did this will tell us a lot about the maximum performance of the vertebrate musculoskeletal system. We need to know more about this to help understand how it functions in ourselves.

“Similarly if we want to build better legged robots then we need to know more about the mechanics of legs in a whole range of animals and nothing has bigger, more powerful legs than Argentinosaurus.”

The University of Manchester team now plans to use the method to recreate the steps of other dinosaurs including Triceratops, Brachiosaurus and T. rex.

`X-Rays Reveal Inner Structure of Earth’s Ancient Magma Ocean

Using the world’s most brilliant X-ray source, scientists have for the first time peered into molten magma at conditions of the deep Earth mantle. The analysis at DESY’s light source PETRA III revealed that molten basalt changes its structure when exposed to pressure of up to 60 gigapascals (GPa), corresponding to a depth of about 1400 kilometres below the surface. At such extreme conditions, the magma changes into a stiffer and denser form, the team around first author Chrystèle Sanloup from the University of Edinburgh reports in the scientific journal Nature. The findings support the concept that the early Earth’s mantle harboured two magma oceans, separated by a crystalline layer. Today, these presumed oceans have crystallised, but molten magma still exists in local patches and maybe thin layers in the mantle.

This shows thin slices of basalt with a diameter of just a fraction of a millimeter were subjected to high pressure in a diamond anvil cell. This sample has been molten and subsequently probed with X-rays three times. (Credit: Chrystèle Sanloup, University of Edinburgh)

This shows thin slices of basalt with a diameter of just a fraction of a millimeter were subjected to high pressure in a diamond anvil cell. This sample has been molten and subsequently probed with X-rays three times. (Credit: Chrystèle Sanloup, University of Edinburgh)

“Silicate liquids like basaltic magma play a key role at all stages of deep Earth evolution, ranging from core and crust formation billions of years ago to volcanic activity today,” Sanloup emphasised. To investigate the behaviour of magma in the deep mantle, the researchers squeezed small pieces of basalt within a diamond anvil cell and applied up to roughly 600,000 times the standard atmospheric pressure. “But to investigate basaltic magma as it still exists in local patches within the Earth’s mantle, we first had to melt the samples,” explained co-author Zuzana Konôpková from DESY, who supported the experiments at the Extreme Conditions Beamline (ECB), P02 at PETRA III.

The team used two strong infrared lasers that each concentrated a power of up to 40 Watts onto an area just 20 micrometres (millionths of a metre) across — that is about 2000 times the power density at the surface of the sun. A clever alignment of the laser optics allowed the team to shoot the heating lasers right through the diamond anvils. With this unique setup, the basalt samples could be heated up to 3,000 degrees Celsius in just a few seconds, until they were completely molten. To avoid overheating of the diamond anvil cell which would have skewed the X-ray measurements, the heating laser was only switched on for a few seconds before and during the X-ray diffraction patterns were taken. Such short data collection times, crucial for this kind of melting experiments, are only possible thanks to the high X-ray brightness at the ECB. “For the first time, we could study structural changes in molten magma over such a wide range of pressure,” said Konôpková.

The powerful X-rays show that the so-called coordination number of silicon, the most abundant chemical element in magmas, in the melt increases from 4 to 6 under high pressure, meaning that the silicon ions rearrange into a configuration where each has six nearest oxygen neighbours instead of the usual four at ambient conditions. As a result, the basalt density increases from about 2.7 grams per cubic centimetre (g/ccm) at low pressure to almost 5 g/ccm at 60 GPa. “An important question was how this coordination number change happens in the molten state, and how that affects the physical and chemical properties,” explained Sanloup. “The results show that the coordination number changes from 4 to 6 gradually from 10 GPa to 35 GPa in magmas, and once completed, magmas are much stiffer, that is much less compressible.” In contrast, in mantle silicate crystals, the coordination number change occurs abruptly at 25 GPa, which defines the boundary between the upper and lower mantle.

This behaviour allows for the peculiar possibility of layered magma oceans in the early Earth’s interior. “At low pressure, magmas are much more compressible than their crystalline counterparts, while they are almost as stiff above 35 GPa,” explained Sanloup. “This implies that early in the history of the Earth, when it started crystallising, magmas may have been negatively buoyant at the bottom of both, upper and lower mantle, resulting in the existence of two magma oceans, separated by a crystalline layer, as has been proposed earlier by other scientists.”

At the high pressure of the lower Earth mantle, the magma becomes so dense that rocks do not sink into it anymore but float on top. This way a crystallised boundary between an upper and a basal magma ocean could have formed within the young Earth. The existence of two separate magma oceans had been postulated to reconcile geochronological estimates for the duration of the magma ocean era with cooling models for molten magma. While the geochronological estimates yield a duration of a few ten million years for the magma ocean era, cooling models show that a single magma ocean would have cooled much quicker, within just one million years. A crystalline layer would have isolated the lower magma ocean thermally and significantly delayed its cooling down. Today, there are still remnants of the basal magma ocean in the form of melt pockets detected atop the Earth’s core by seismology.

Earliest Record of Copulating Insects Discovered

Scientists have found the oldest fossil depicting copulating insects in northeastern China, published November 6th in the open-access journal PLOS ONE by Dong Ren and colleagues at the Capital Normal University in China.

This image shows a holotype male, on the right, and allotype female, on the left. (Credit: Li S, Shih C, Wang C, Pang H, Ren D)

This image shows a holotype male, on the right, and allotype female, on the left. (Credit: Li S, Shih C, Wang C, Pang H, Ren D)

Fossil records of mating insects are fairly sparse, and therefore our current knowledge of mating position and genitalia orientation in the early stages of evolution is rather limited.

In this study, the authors present a fossil of a pair of copulating froghoppers, a type of small insect that hops from plant to plant much like tiny frogs. The well-preserved fossil of these two froghoppers showed belly-to-belly mating position and depicts the male reproductive organ inserting into the female copulatory structure.

This is the earliest record of copulating insects to date, and suggests that froghoppers’ genital symmetry and mating position have remained static for over 165 million years. Ren adds, “We found these two very rare copulating froghoppers which provide a glimpse of interesting insect behavior and important data to understand their mating position and genitalia orientation during the Middle Jurassic.”

Newly Discovered Predatory Dinosaur ‘King of Gore’ Reveals the Origins of T. Rex

A remarkable new species of tyrannosaur has been unearthed in Grand Staircase-Escalante National Monument (GSENM), southern Utah. The huge carnivore inhabited Laramidia, a landmass formed on the western coast of a shallow sea that flooded the central region of North America, isolating western and eastern portions of the continent for millions of years during the Late Cretaceous Period, between 95-70 million years ago. The newly discovered dinosaur, belonging to the same evolutionary branch as the famous Tyrannosaurus rex, was announced today in the open-access scientific journal PLOS ONE and unveiled on exhibit in the Past Worlds Gallery at the Natural History Museum of Utah at the Rio Tinto Center in Salt Lake City, Utah.

This skull, which includes pieces of real fossil, shows the unique features of this new tyrannosaur. (Credit: Mark Loewen, NHMU)

This skull, which includes pieces of real fossil, shows the unique features of this new tyrannosaur. (Credit: Mark Loewen, NHMU)

Among tyrannosaurs, a group of small to large-bodied, bipedal carnivorous dinosaurs including T. rex that lived during the Jurassic and Cretaceous periods, the newly discovered species, Lythronax argestes, possesses several unique features, a short narrow snout with a wide back of the skull with forward-oriented eyes. Lythronax translates as “king of gore,” and the second part of the name, argestes, refers to its geographic location in the American Southwest. Previously, paleontologists thought this type of wide-skulled tyrannosaurid only appeared 70 million years ago, whereas Lythronax shows it had evolved at least 10 million years earlier.

The study, funded in large part by the Bureau of Land Management and the National Science Foundation, was led by Dr. Mark Loewen, research associate at the Natural History Museum of Utah, and adjunct assistant professor in the Department of Geology and Geophysics at the University of Utah. Additional collaborative authors include Dr. Randall Irmis (Natural History Museum of Utah and Dept. of Geology and Geophysics, University of Utah), Dr. Joseph Sertich (Denver Museum of Nature & Science), Dr. Philip Currie (University of Alberta), and Dr. Scott Sampson (Denver Museum of Nature & Science). The skeleton was discovered by BLM employee Scott Richardson, and excavated by a joint NHMU-GSENM team.

Lythronax lived on Laramidia, along the western shores of the great seaway that separated North America; this landmass hosted a vast array of unique dinosaur species and served as the crucible of evolution for iconic dinosaur groups such as the horned and duck billed dinosaurs. This study also indicates that tyrannosaurid dinosaurs (the group of tyrannosaurs that includes T. rex) likely evolved in isolation on this island continent. Lythronax stands out from its contemporaries in having a much wider skull at the eyes and a narrow short snout, similar to its relative T. rex, which lived 10-12 million years later. Dr. Mark Loewen, the study’s lead author, noted, “The width of the back of the skull of Lythronax allowed it to see with an overlapping field of view — giving it the binocular vision — very useful for a predator and a condition we associate with T. rex.” Previously, paleontologists thought this type of wide-skulled tyrannosaurid only appeared ~70 million years ago, whereas Lythronax shows it had evolved at least 10 million years earlier

Paleontologists have recently determined that the dinosaurs of southern Laramidia (Utah, New Mexico, Texas, and Mexico), although belonging to the same major groups, differ at the species level from those on northern Laramidia (Montana, Wyoming, the Dakotas, and Canada). Lythronax and its tyrannosaurid relatives on southern Laramidia are more closely related to each other than the long snouted forms from northern Laramidia.

Dr. Joseph Sertich, a co-author of the study, stated that, “Lythronax may demonstrate that tyrannosaurs followed a pattern similar to what we see in other dinosaurs from this age, with different species living in the north and south at the same time.”

These patterns of dinosaur distribution across Laramidia lead the researchers to ask what might have caused the divisions between the north and south, given that an enterprising dinosaur could have walked from Alaska to Mexico if given enough time. Dr. Randall Irmis, a study co-author, explained that by analyzing the evolutionary relationships, geologic age, and geographic distribution of tyrannosaurid dinosaurs, the team determined that “Lythronax and other tyrannosaurids diversified between 95-80 million years ago, during a time when North America’s interior sea was at its widest extent. The incursion of the seaway onto large parts of low-lying Laramidia would have separated small areas of land from each other, allowing different species of dinosaurs to evolve in isolation on different parts of the landmass.” As the seaway gradually retreated after 80 million years ago, these differences in dinosaur species may have been reinforced by climate variations, differences in food sources (different prey and plants), and other factors. This hypothesis explains why the iconic Late Cretaceous dinosaurs of western North America are so different from those of the same age on other continents.

A Treasure Trove of Dinosaurs on the Lost Continent of Laramidia

Lythronax was discovered in Grand Staircase-Escalante National Monument (GSENM), which encompasses 1.9 million acres of high desert terrain in south-central Utah. This vast and rugged region, part of the National Landscape Conservation System administered by the Bureau of Land Management (BLM), was the last major area in the lower 48 states to be formally mapped by cartographers. Today GSENM is the largest national monument in the United States. Co-author Dr. Scott Sampson proclaimed that, “Grand Staircase-Escalante National Monument is the last great, largely unexplored dinosaur boneyard in the lower 48 states.”

During the past fourteen years, crews from the Natural History Museum of Utah, GSENM, the Denver Museum of Nature & Science, and several other partner institutions (for example, the Raymond Alf Museum of Paleontology and Utah Geological Survey) have unearthed a new assemblage of more than a dozen species dinosaurs in GSENM. In addition to Lythronax, the collection includes a variety of other plant-eating dinosaurs — among them duck-billed hadrosaurs, armored ankylosaurs, dome-headed pachycephalosaurs, and two other horned dinosaurs, Utahceratops and Kosmoceratops — together with carnivorous dinosaurs great and small, from “raptor-like” predators such as Talos, to another large tyrannosaur named Teratophoneus. Amongst the other fossil discoveries are fossil plants, insect traces, snails, clams, fishes, amphibians, lizards, turtles, crocodiles, and mammals. Together, this diverse bounty of fossils is offering one of the most comprehensive glimpses into a Mesozoic ecosystem. Remarkably, virtually all of the identifiable dinosaur remains found in GSENM belong to new species.

Dr. Philip Currie, another co-author, stated that, “Lythronax is a wonderful example of just how much more we have to learn about with world of dinosaurs. Many more exciting fossils await discovery in Grand Staircase-Escalante National Monument.”

Clay May Have Been Birthplace of Life On Earth, New Study Suggests

Clay, a seemingly infertile blend of minerals, might have been the birthplace of life on Earth. Or at least of the complex biochemicals that make life possible, Cornell University biological engineers report in the Nov. 7 online issue of the journal Scientific Reports, published by Nature Publishing.

“We propose that in early geological history clay hydrogel provided a confinement function for biomolecules and biochemical reactions,” said Dan Luo, professor of biological and environmental engineering and a member of the Kavli Institute at Cornell for Nanoscale Science.

In simulated ancient seawater, clay forms a hydrogel — a mass of microscopic spaces capable of soaking up liquids like a sponge. Over billions of years, chemicals confined in those spaces could have carried out the complex reactions that formed proteins, DNA and eventually all the machinery that makes a living cell work. Clay hydrogels could have confined and protected those chemical processes until the membrane that surrounds living cells developed.

In simulated ancient seawater, clay forms a hydrogel -- a mass of microscopic spaces capable of soaking up liquids like a sponge. Over billions of years, chemicals confined in those spaces could have carried out the complex reactions that formed proteins, DNA and eventually all the machinery that makes a living cell work. Clay hydrogels could have confined and protected those chemical processes until the membrane that surrounds living cells developed. (Credit: © SSilver / Fotolia)

In simulated ancient seawater, clay forms a hydrogel — a mass of microscopic spaces capable of soaking up liquids like a sponge. Over billions of years, chemicals confined in those spaces could have carried out the complex reactions that formed proteins, DNA and eventually all the machinery that makes a living cell work. Clay hydrogels could have confined and protected those chemical processes until the membrane that surrounds living cells developed. (Credit: © SSilver / Fotolia)

To further test the idea, the Luo group has demonstrated protein synthesis in a clay hydrogel. The researchers previously used synthetic hydrogels as a “cell-free” medium for protein production. Fill the spongy material with DNA, amino acids, the right enzymes and a few bits of cellular machinery and you can make the proteins for which the DNA encodes, just as you might in a vat of cells.

To make the process useful for producing large quantities of proteins, as in drug manufacturing, you need a lot of hydrogel, so the researchers set out to find a cheaper way to make it. Postdoctoral researcher Dayong Yang noticed that clay formed a hydrogel. Why consider clay? “It’s dirt cheap,” said Luo. Better yet, it turned out unexpectedly that using clay enhanced protein production.

But then it occurred to the researchers that what they had discovered might answer a long-standing question about how biomolecules evolved. Experiments by the late Carl Sagan of Cornell and others have shown that amino acids and other biomolecules could have been formed in primordial oceans, drawing energy from lightning or volcanic vents. But in the vast ocean, how could these molecules come together often enough to assemble into more complex structures, and what protected them from the harsh environment?

Scientists previously suggested that tiny balloons of fat or polymers might have served as precursors of cell membranes. Clay is a promising possibility because biomolecules tend to attach to its surface, and theorists have shown that cytoplasm — the interior environment of a cell — behaves much like a hydrogel. And, Luo said, a clay hydrogel better protects its contents from damaging enzymes (called “nucleases”) that might dismantle DNA and other biomolecules.

As further evidence, geological history shows that clay first appeared — as silicates leached from rocks — just at the time biomolecules began to form into protocells — cell-like structures, but incomplete — and eventually membrane-enclosed cells. The geological events matched nicely with biological events.

How these biological machines evolved remains to be explained, Luo said. For now his research group is working to understand why a clay hydrogel works so well, with an eye to practical applications in cell-free protein production.

Luo collaborated with professor Max Lu of the Australian Institute for Bioengineering and Nanotechnology at the University of Queensland in Australia. The work was performed at the Cornell Center for Materials Research Shared Facilities, supported by the National Science Foundation.

Fossil of Largest Known Platypus Discovered in Australia

No living mammal is more peculiar than the platypus. It has a broad, duck-like bill, thick, otter-like fur, and webbed, beaver-like feet. The platypus lays eggs rather than gives birth to live young, its snout is covered with electroreceptors that detect underwater prey, and male platypuses have a venomous spur on their hind foot. Until recently, the fossil record indicated that the platypus lineage was unique, with only one species inhabiting Earth at any one time. This picture has changed with the publication of a new study in the latest issue of the Journal of Vertebrate Paleontology that describes a new, giant species of extinct platypus that was a side-branch of the platypus family tree.

This image shows Obdurodon tharalkooschild, a middle to late Cenozoic giant toothed platypus from the the World Heritage fossil deposits of Riversleigh, Australia. At about one meter (more than 3 feet) in length and with powerful teeth (inset: the holotype, a first lower molar), it would have been capable of killing much larger prey, such as lungfish and even small turtles, than its much smaller living relative. (Credit: Reconstruction / Illustration by Peter Schouten.)

This image shows Obdurodon tharalkooschild, a middle to late Cenozoic giant toothed platypus from the the World Heritage fossil deposits of Riversleigh, Australia. At about one meter (more than 3 feet) in length and with powerful teeth (inset: the holotype, a first lower molar), it would have been capable of killing much larger prey, such as lungfish and even small turtles, than its much smaller living relative. (Credit: Reconstruction / Illustration by Peter Schouten.)

The new platypus species, named Obdurodon tharalkooschild, is based on a single tooth from the famous Riversleigh World Heritage Area of northwest Queensland. While many of Riversleigh’s fossil deposits are now being radiometrically dated, the precise age of the particular deposit that produced this giant platypus is in doubt but is likely to be between 15 and 5 million years old.

“Monotremes (platypuses and echidnas) are the last remnant of an ancient radiation of mammals unique to the southern continents. A new platypus species, even one that is highly incomplete, is a very important aid in developing understanding about these fascinating mammals,” said PhD candidate Rebecca Pian, lead author of the study.

Based on the size of tooth, it is estimated that this extinct species would have been nearly a meter (more than three feet) long, twice the size of the modern platypus. The bumps and ridges on the teeth also provide clues about what this species likely ate.

“Like other platypuses, it was probably a mostly aquatic mammal, and would have lived in and around the freshwater pools in the forests that covered the Riversleigh area millions of years ago,” said Dr. Suzanne Hand of the University of New South Wales, a co-author of the study. “Obdurodon tharalkooschild was a very large platypus with well-developed teeth, and we think it probably fed not only on crayfish and other freshwater crustaceans, but also on small vertebrates including the lungfish, frogs, and small turtles that are preserved with it in the Two Tree Site fossil deposit.”

The oldest platypus fossils come from 61 million-year-old rocks in southern South America. Younger platypus fossils are known from Australia in what is now the Simpson Desert. Before the discovery of Obdurodon tharalkooschild, these fossils suggested that platypuses became smaller and reduced the size of their teeth through time. The modern platypus completely lacks teeth as an adult and instead bears horny pads in its mouth. The name Obdurodon comes from the Greek for “lasting (obdurate) tooth” and was coined to distinguish extinct toothed platypuses from the essentially toothless modern species.

“Discovery of this new species was a shock to us because prior to this, the fossil record suggested that the evolutionary tree of platypuses was relatively linear one,” said Dr. Michael Archer of the University of New South Wales, a co-author of the study. “Now we realize that there were unanticipated side branches on this tree, some of which became gigantic.”

The specific epithet of the new species, tharalkooschild, honors an Indigenous Australian creation story about the origin of the platypus. In the Dreamtime, Tharalkoo was a head-strong girl duck inclined to disobey her parents. Her parents warned her not to swim downriver because Bigoon the Water-rat would have his wicked way with her. Scoffing, she disobeyed her parents and was ravished by Bigoon. By the time Tharalkoo escaped and returned to her family, the other girl ducks were laying eggs, so she did the same. But instead of a fluffy little duckling emerging from her egg, her child was an amazing chimera that had the bill, webbed hind feet, and egg-laying habit of a duck, along with the fur and front feet of a rodent — the first Platypus.

Development of Cryptic Worms Provides New Insights Into Molluscan Evolution

There are still a lot of unanswered questions about mollusks, e.g. snails, slugs and mussels. The research group of Andreas Wanninger, Head of the Department of Integrative Zoology of the University of Vienna, took a detailed look at the development of cryptic worms. The larvae of the “wirenia argentea” hold a much more complex muscular architecture than their adults — they remodel during their metamorphosis. That’s a clue that the ancestors had a highly complex muscular body plan.

The findings are published in the current issue of the scientific journal Current Biology.

With over 200,000 species described, the Mollusca — soft-bodies animals that, among others, include snails, slugs, mussels, and cephalopods — constitutes one of the most species-rich animal phyla. What makes them particularly interesting for evolutionary studies, however, is not the sheer number of their representatives, but rather their vast variety of body morphologies they exhibit. Ever since they have been unambiguously assigned to the phylum, a group of worm-like, shell-less mollusks whose body is entirely covered by spicules — the Aplacophora (“non-shell-bearers,” usually small animals in the mm-range that inhabit the seafloors from a few meters to abyssal depths) has been hotly debated as being the group of today’s living mollusks that most closely resembles the last common ancestor to all mollusks.

Collected specimens of the neomeniomorph Helluoherpia aegiri (Aplacophora, Mollusca) from Bergen, Norway. (Credit: Copyright Maik Scherholz)

Collected specimens of the neomeniomorph Helluoherpia aegiri (Aplacophora, Mollusca) from Bergen, Norway. (Credit: Copyright Maik Scherholz)

However, new studies on the development of a typical aplacophoran (Wirenia argentea, a species that was collected in 200 m depth off the coast of Bergen, Norway) tell a different story. Although their adult, worm-like body appears rather simple (hence the traditional assumption that they may constitute a basal molluscan group), their small, 0.1 to 0.3mm long larvae undergo a stage in which they show an extremely complex muscular architecture which is largely lost and remodeled during metamorphosis to become the simple muscular arrangement of the adult animal. The entire secret these animals hold only unravels if one takes a detailed look at the morphology of these tiny animals. In doing so, Andreas Wanninger, Head of the Department of Integrative Zoology of the University of Vienna, and colleagues found that the musculature of Wirenia larvae in detail resembles that of a quite different-looking mollusk, the so-called polyplacophorans or chitons (flat animals in the cm-range that bear 8 shell plates on their back). In contrast to the former, however, chitons do retain much of the larval muscles as adults.

While it has been suspected for a long time that aplacophorans and chitons are closely related, it has often been argued that the aplacophoran morphology is closer to the ancestral molluscan condition than the polyplacophoran one. The current data paint a different picture: the fact that the highly complex larval muscular bodyplan is so similar in both groups but is only carried over into the adult stage in one of them — the chitons — strongly suggests that the common ancestor of both groups was of similar complexity; thereby implying that the worm-like groups lost these complex traits and became secondarily simplified over evolutionary time.

Interestingly, findings from the fossil record support this new developmental evidence. A recently described species from the Silurian — Kulindroplax perissokosmos — obviously had a mix of aplacophoran and polyplacophoran characters: while being long, slender, cylindrical in diameter, and covered by spicules — closely reminding us of today’s aplacophorans — it had seven shells on its back. Although, at an age of 425 myr, too young to be considered the long-sought ancestor of polyplacophorans, aplacophorans and maybe even all mollusks (the origin of the phylum is known to date back to at least the Cambrian Explosion some 540 myr ago), this relative of the distant past demonstrates that evolution has widely played with the combination of the various morphological character sets in individual molluscan groups. Taking together the data currently available, a coherent scenario emerges that strongly suggests that today’s simple, wormy mollusks evolved from an ancestor that had a much more complex musculature (and probably overall internal anatomy) and was covered with protective shell plates.

Extinct ‘Mega Claw’ Creature Had Spider-Like Brain

Researchers have discovered the earliest known complete nervous system exquisitely preserved in the fossilized remains of a never-before described creature that crawled or swam in the ocean 520 million years ago.

Research led by University of Arizona Regents’ Professor Nick Strausfeld and London Natural History Museum’s Greg Edgecombe has revealed that the ancestors of chelicerates (spiders, scorpions and their kin) branched off from the family tree of other arthropods — including insects, crustaceans and millipedes — more than half a billion years ago.

This is a close-up of the head region of the Alalcomenaeus fossil specimen with the superimposed colors of a microscopy technique revealing the distribution of chemical elements in the fossil. Copper shows up as blue, iron as magenta and the CT scans as green. The coincidence of iron and CT denote nervous system. The creature boasted two pairs of eyes (ball-shaped structures at the top). (Credit: N. Strausfeld/University of Arizona)

This is a close-up of the head region of the Alalcomenaeus fossil specimen with the superimposed colors of a microscopy technique revealing the distribution of chemical elements in the fossil. Copper shows up as blue, iron as magenta and the CT scans as green. The coincidence of iron and CT denote nervous system. The creature boasted two pairs of eyes (ball-shaped structures at the top). (Credit: N. Strausfeld/University of Arizona)

The team discovered the earliest known complete nervous system exquisitely preserved in the fossilized remains of a never-before described creature that crawled or swam in the ocean 520 million years ago.

Described in the current issue of the journal Nature, the find belongs to an extinct group of marine arthropods known as megacheirans (Greek for “large claws”) and solves the long-standing mystery of where this group fits in the tree of life.

“We now know that the megacheirans had central nervous systems very similar to today’s horseshoe crabs and scorpions,” said the senior author of the study, Nicholas Strausfeld, a Regents’ Professor in the University of Arizona’s department of neuroscience. “This means the ancestors of spiders and their kin lived side by side with the ancestors of crustaceans in the Lower Cambrian.”

The scientists identified the 3-centimeter-long creature (a little over an inch) unearthed from the famous Chengjiang formation near Kunming in southwest China, as a representative of the extinct genus Alalcomenaeus. Animals in this group had an elongated, segmented body equipped with about a dozen pairs of body appendages enabling the animal to swim or crawl or both. All featured a pair of long, scissor-like appendages attached to the head, most likely for grasping or sensory purposes, which gave them their collective name, megacheirans.

Co-author Greg Edgecombe said that some paleontologists had used the external appearance of the so-called great appendage to infer that the megacheirans were related to chelicerates, based on the fact that the great appendage and the fangs of a spider or scorpion both have an “elbow joint” between their basal part and their pincer-like tip.

“However, this wasn’t rock solid because others lined up the great appendage either a segment in front of spider fangs or one segment behind them,” Edgecombe said. “We have now managed to add direct evidence from which segment the brain sends nerves into the great appendage. It’s the second one, the same as in the fangs, or chelicerae. For the first time we can analyze how the segments of these fossil arthropods line up with each other the same way as we do with living species — using their nervous systems.”

The team analyzed the fossil by applying different imaging and image processing techniques, taking advantage of iron deposits that had selectively accumulated in the nervous system during fossilization.

To make the neural structures visible, the researchers used computed tomography (CT), a technique that reconstructs 3-D features within in the specimen. However, “the CT scan didn’t show the outline of the nervous systems unambiguously enough,” Strausfeld said, “while a scanning laser technique mapping the distribution of chemical elements showed iron deposits outlining the nervous system almost as convincingly but with minor differences.”

Next, the group applied advanced imaging techniques to the scans, first overlaying the magenta color of the iron deposit scan with the green color of the CT scan, then subtracting the two.

“We discarded any image data that were not present in both scans,” Strausfeld explained. “Where the two overlapped, the magenta and the green added to each other, revealing the preserved nervous system as a white structure, which we then inverted.”

This resulted in what resembled a negative X-ray photograph of the fossil.

“The white structures now showed up as black,” Strausfeld said, “and out popped this beautiful nervous system in startling detail.”

Comparing the outline of the fossil nervous system to nervous systems of horseshoe crabs and scorpions left no doubt that 520-million year-old Alalcomenaeus was a member of the chelicerates.

Specifically, the fossil shows the typical hallmarks of the brains found in scorpions and spiders: Three clusters of nerve cells known as ganglia fused together as a brain also fused with some of the animal’s body ganglia. This differs from crustaceans where ganglia are further apart and connected by long nerves, like the rungs of a rope ladder.

Other diagnostic features include the forward position of the gut opening in the brain and the arrangement of optic centers outside and inside the brain supplied by two pairs of eyes, just like in horseshoe crabs.

To make the analysis more robust, the researchers then added these features to an existing catalog of about 150 characteristics used in constructing evolutionary relationships among arthropods based on neuroanatomical features.

“Greg plugged these characteristics into a computer-based cladistic analysis to ask, ‘where does this fossil appear in a relational tree?'” Strausfeld said. “Our fossil of Alalcomenaeus came out with the modern chelicerates.”

But according to Strausfeld, the story doesn’t end there.

“The prominent appendages that gave the megacheirans their name were clearly used for grasping and holding and probably for sensory inputs. The parts of the brain that provide the wiring for where these large appendages arise are very large in this fossil. Based on their location, we can now say that the biting mouthparts in spiders and their relatives evolved from these appendages.”

Less than a year ago, the same research team published the discovery of a fossilized brain in the 520 million year-old fossil Fuxianhuia protensa, showing unexpected similarity to the complex brain of a modern crustacean.

“Our new find is exciting because it shows that mandibulates (to which crustaceans belong) and chelicerates were already present as two distinct evolutionary trajectories 520 million years ago, which means their common ancestor must have existed much deeper in time,” Strausfeld said. “We expect to find fossils of animals that have persisted from more ancient times, and I’m hopeful we will one day find the ancestral type of both the mandibulate and chelicerate nervous system ground patterns. They had to come from somewhere. Now the search is on.”

For this research project, Strausfeld teamed up with Gengo Tanaka of the Japan Agency for Marine-Earth Science and Technology in Yokosuka, Japan; Xianguang Hou, director of the Yunnan Key Laboratory for Paleobiology at Yunnan University in Kunming, China, and his colleague Xiaoya Ma who is presently working with Gregory Edgecombe in the paleontology department of the Natural History Museum, London.

Tell-Tale Toes Point to Oldest-Known Fossil Bird Tracks from Australia

Two fossilized footprints found at Dinosaur Cove in Victoria, Australia, were likely made by birds during the Early Cretaceous, making them the oldest known bird tracks in Australia.

The journal Palaeontology is publishing an analysis of the footprints led by Anthony Martin, a paleontologist at Emory University in Atlanta who specializes in trace fossils, which include tracks, burrows and nests. The study was co-authored by Patricia Vickers-Rich and Michael Hall of Monash University in Victoria and Thomas Rich of the Museum Victoria in Melbourne.

Much of the rocky coastal strata of Dinosaur Cove in southern Victoria were formed in river valleys in a polar climate during the Early Cretaceous. A great rift valley formed as the ancient supercontinent Gondwana broke up and Australia separated from Antarctica.

“These tracks are evidence that we had sizeable, flying birds living alongside other kinds of dinosaurs on these polar, river floodplains, about 105 million years ago,” Martin says.

The thin-toed tracks in fluvial sandstone were likely made by two individual birds that were about the size of a great egret or a small heron, Martin says. Rear-pointing toes helped distinguish the tracks as avian, as opposed to a third nearby fossil track that was discovered at the same time, made by a non-avian theropod.

The Cretaceous bird tracks were found on a slab of sandstone. (Credit: Photo by Alan Tait)

The Cretaceous bird tracks were found on a slab of sandstone. (Credit: Photo by Alan Tait)

A long drag mark on one of the two bird tracks particularly interested Martin.

“I immediately knew what it was — a flight landing track — because I’ve seen many similar tracks made by egrets and herons on the sandy beaches of Georgia,” Martin says.

Martin often leads student field trips to Georgia’s coast and barrier islands, where he studies modern-day tracks and other life traces, to help him better identify fossil traces.

The ancient landing track from Australia “has a beautiful skid mark from the back toe dragging in the sand, likely caused as the bird was flapping its wings and coming in for a soft landing,” Martin says. Fossils of landing tracks are rare, he adds, and could add to our understanding of the evolution of flight.

Today’s birds are actually modern-day dinosaurs, and share many characteristics with non-avian dinosaurs that went extinct, such as nesting and burrowing. (Martin previously discovered the trace fossils of non-avian dinosaur burrows, including at a site along the coast of Victoria.)

The theropod carnivore Tyrannosaurus rex had a vestigial rear toe, evidence that T. rex shared a common ancestor with birds. “In some dinosaur lineages, that rear toe got longer instead of shorter and made a great adaptation for perching up in trees,” Martin says. “Tracks and other trace fossils offer clues to how non-avian dinosaurs and birds evolved and started occupying different ecological niches.”

Dinosaur Cove has yielded a rich trove of non-avian dinosaur bones from dozens of species, but only one skeletal piece of a bird — a fossilized wishbone — has been found in the Cretaceous rocks of Victoria.

Martin spotted the first known dinosaur trackway of Victoria in 2010 and a few other tracks have been discovered since then. Volunteers working in Dinosaur Cove found these latest tracks on a slab of rock, and Martin later analyzed them.

The tracks were made on the moist sand of a river bank, perhaps following a polar winter, after spring and summer flood waters had subsided, Martin says. “The biggest question for me,” he adds, “is whether the birds that made these tracks lived at the site during the polar winter, or migrated there during the spring and summer.”

One of the best records of the dinosaur-bird connection has come from discoveries in Liaoning province of Northeastern China, including fossils of non-avian dinosaurs with feathers. Samples of amber have also been found in Liaoning, containing preserved feathers from both birds and non-avian dinosaurs going back to the Cretaceous.

“In contrast, the picture of early bird evolution in the Southern Hemisphere is mostly incomplete,” Martin says, “but with these tracks, it just got a little better.”