Paleontologist Presents Origin of Life Theory

It has baffled humans for millennia: how did life begin on planet Earth? Now, new research from a Texas Tech University paleontologist suggests it may have rained from the skies and started in the bowels of hell.

Sankar Chatterjee, Horn Professor of Geosciences and curator of paleontology at The Museum of Texas Tech University believes he has found the answer by connecting theories on chemical evolution with evidence related to our planet’s early geology.

“This is bigger than finding any dinosaur,” Chatterjee said. “This is what we’ve all searched for – the Holy Grail of science.”

Thanks to regular and heavy comet and meteorite bombardment of Earth’s surface during its formative years 4 billion years ago, the large craters left behind not only contained water and the basic chemical building blocks for life, but also became the perfect crucible to concentrate and cook these chemicals to create the first simple organisms.

Most researchers believe that life originated in deep-sea hydrothermal vents. About 4 billion years ago, Earth was a watery planet; ocean stretched from pole to pole; any life synthesis would be dilated. It needed a protected basin. (Credit: Image courtesy of Texas Tech University)

Most researchers believe that life originated in deep-sea hydrothermal vents. About 4 billion years ago, Earth was a watery planet; ocean stretched from pole to pole; any life synthesis would be dilated. It needed a protected basin. (Credit: Image courtesy of Texas Tech University)

He will present his findings Oct. 30 during the 125th Anniversary Annual Meeting of the Geological Society of America in Denver.

As well as discovering how ancient animals flew, Chatterjee discovered the Shiva Meteorite Crater, which was created by a 25-mile-wide meteorite that struck off the coast of India. This research concluded this giant meteorite wreaked havoc simultaneously with the Chicxulub meteorite strike near Mexico, finishing the dinosaurs 65 million years ago.

Ironically, Chatterjee’s latest research suggests meteorites can be givers of life as well as takers. He said that meteor and comet strikes likely brought the ingredients and created the right conditions for life on our planet. By studying three sites containing the world’s oldest fossils, he believes he knows how the first single-celled organisms formed in hydrothermal crater basins.

“When the Earth formed some 4.5 billion years ago, it was a sterile planet inhospitable to living organisms,” Chatterjee said. “It was a seething cauldron of erupting volcanoes, raining meteors and hot, noxious gasses. One billion years later, it was a placid, watery planet teeming with microbial life – the ancestors to all living things.”

Recipe for Living

“For may years, the debate on the origins of life centered on the chemical evolution of living cells from organic molecules by natural processes. Chatterjee said life began in four steps of increasing complexity – cosmic, geological, chemical and biological.

In the cosmic stage, a still-forming Earth and our solar system took a daily pounding from rocky asteroids and icy comets between 4.1 to 3.8 billion years ago. Plate tectonics, wind and water have hidden evidence of this early onslaught on our planet, but ancient craters on the surfaces of Mars, Venus, Mercury and our moon show just how heavy the meteorite showers once were.

Larger meteorites that created impact basins of about 350 miles in diameter inadvertently became the perfect crucibles, he said. These meteorites also punched through the Earth’s crust, creating volcanically driven geothermal vents. Also, they brought the basic building blocks of life that could be concentrated and polymerized in the crater basins.

After studying the environments of the oldest fossil-containing rocks on Earth in Greenland, Australia and South Africa, Chatterjee said these could be remnants of ancient craters and may be the very spots where life began in deep, dark and hot environments.

Because of Earth’s perfect proximity to the sun, the comets that crashed here melted into water and filled these basins with water and more ingredients. This gave rise to the geological stage. As these basins filled, geothermal venting heated the water and created convection, causing the water to move constantly and create a thick primordial soup.

“The geological stage provides special dark, hot, and isolated environments of the crater basins with the hydrothermal vent systems that served as incubators for life,” he said. “Segregation and concentration of organic molecules by convective currents took place here, something like the kinds we find on the ocean floor, but still very different. It was a bizarre and isolated world that would seem like a vision of hell with the foul smells of hydrogen sulfide, methane, nitric oxide and steam that provided life-sustaining energy.”

Then began the chemical stage, Chatterjee said. The heat churning the water inside the craters mixed chemicals together and caused simple compounds to grow into larger, more complex ones.

Protecting Important Information

Most likely, pores and crevices on the crater basins acted as scaffolds for concentrations of simple RNA and protein molecules, he said. Unlike a popular theory that believes RNA came first and proteins followed, Chatterjee believes RNA and proteins emerged simultaneously and were encapsulated and protected from the environment.

“The dual origin of the ‘RNA/protein’ world is more plausible in the vent environments than the popular ‘RNA world,’” he said. “RNA molecules are very unstable. In vent environments, they would decompose quickly. Some catalysts, such as simple proteins, were necessary for primitive RNA to replicate and metabolize. On the other hand, amino acids, from which proteins are made, are easier to make than RNA components.”

The question remains how loose RNA and protein material floating in this soup protected itself in a membrane. Chatterjee believes University of California professor David Deamer’s hypothesis that membranous material existed in the primordial soup. Deamer isolated fatty acid vesicles from the Murchison meteorite that fell in 1969 in Australia. The cosmic fatty bubbles extracted from the meteorite mimic cell membranes.

“Meteorites brought this fatty lipid material to early Earth,” Chatterjee said. “This fatty lipid material floated on top of the water surface of crater basins but moved to the bottom by convection currents. At some point in this process during the course of millions of years, this fatty membrane could have encapsulated simple RNA and proteins together like a soap bubble. The RNA and protein molecules begin interacting and communicating. Eventually RNA gave way to DNA – a much more stable compound – and with the development of the genetic code, the first cells divided.”

The final stage – the biological stage – represents the origin of replicating cells as they began to store, process and transmit genetic information to their daughter cells, Chatterjee said. Infinite combinations took place, and countless numbers must have failed to function before the secret of replication was broken and the proper selection occurred.

“These self-sustaining first cells were capable of Darwinian evolution,” he said. “The emergence of the first cells on the early Earth was the culmination of a long history of prior chemical, geological and cosmic processes.”

Chatterjee also believes that modern RNA-viruses and protein-rich prions that cause deadly diseases probably represent the evolutionary legacy of primitive RNA and protein molecules. They may be the oldest cellular particles that predated the first cellular life. Once cellular life evolved, RNA-viruses and prions became redundant, but survived as parasites on the living cells.

The problem with theories on the origins of life is that they don’t propose any experiments that lead to the emergence of cells, Chatterjee said. However, he suggested an experiment to recreate the ancient prebiotic world and support or refute his theory.

“If future experiments with membrane-bound RNA viruses and prions result in the creation of a synthetic protocell, it may reflect the plausible pathways for the emergence of life on early Earth,” he said.

What: Paper No. 300-5: Impact, RNA-Protein World and the Endoprebiotic Origin of Life https://gsa.confex.com/gsa/2013AM/webprogram/Paper222699.html

Reading Ancient Climate from Plankton Shells

Climate changes from millions of years ago are recorded at daily rate in ancient sea shells, new research shows.

A huge X-ray microscope has revealed growth bands in plankton shells that show how shell chemistry records the sea temperature.

The results could allow scientists to chart short timescale changes in ocean temperatures hundreds of millions of years ago.

Plankton shells show features like tree rings, recording historical climate.

The intricate structure of plankton shells provides new opportunities to chart complex changes in climate. (Credit: Oscar Branson, University of Cambridge)

The intricate structure of plankton shells provides new opportunities to chart complex changes in climate. (Credit: Oscar Branson, University of Cambridge)

It’s important to understand current climate change in the light of how climate has varied in the geological past. One way to do this, for the last few thousand years, is to analyse ice from the poles. The planet’s temperature and atmosphere are recorded by bubbles of ancient air trapped in polar ice cores. The oldest Antarctic ice core records date back to around 800,000 years ago.

Results just published in the journal Earth and Planetary Sciences Letters reveal how ancient climate change, pushing back hundreds of millions of years ago into deep time, is recorded by the shells of oceanic plankton.

As microbial plankton grow in ocean waters, their shells, made of the mineral calcite, trap trace amounts of chemical impurities, maybe only a few atoms in a million getting replaced by impurity atoms. Scientists have noticed that plankton growing in warmer waters contain more impurities, but it has not been clear how and why this “proxy” for temperature works.

When the plankton die, they fall to the muddy ocean floor, and can be recovered today from that muddy ocean floor sediments, which preserve the shells as they are buried. The amount of impurity, measured in fossil plankton shells, provides a record of past ocean temperature, dating back more than 100 million years ago.

Now, researchers from the Department of Earth Sciences at the University of Cambridge have measured traces of magnesium in the shells of plankton using an X-ray microscope in Berkeley, California, at the “Advanced Light Source” synchrotron — a huge particle accelerator that generates X-rays to study matter in minuscule detail.

The powerful X-ray microscope has revealed narrow nanoscale bands in the plankton shell where the amount of magnesium is very slightly higher, at length scales as small as one hundredth that of a human hair. They are growth bands, rather like tree rings, but in plankton the bands occur daily or so, rather than yearly.

“These growth bands in plankton show the day by day variations in magnesium in the shell at a 30 nanometre length scale. For slow-growing plankton it opens the way to seeing seasonal variations in ocean temperatures or plankton growth in samples dating back tens to hundreds of millions of years,” says Professor Simon Redfern, one of the experimenters on the project.

“Our X-ray data show that the trace magnesium sits inside the crystalline mineral structure of the plankton shell. That’s important because it validates previous assumptions about using magnesium contents as a measure of past ocean temperature.”

The chemical environment of the trace elements in the plankton shell, revealed in the new measurements, shows that the magnesium sits in calcite crystal replacing calcium, rather than in microbial membranes in their impurities in the shell. This helps explain why temperature affects the chemistry of plankton shells — warmer waters favour increased magnesium in calcite.

The group are now using the UK’s “Diamond” synchrotron X-ray facility to measure how plankton shells grow and whether they change at all in the ocean floor sediments. Their latest results could allow scientists to establish climate variability in Earth’s far distant past, as well as providing new routes to measure ocean acidification and salinity in past oceans.

Bees Underwent Massive Extinctions When Dinosaurs Did

For the first time ever, scientists have documented a widespread extinction of bees that occurred 65 million years ago, concurrent with the massive event that wiped out land dinosaurs and many flowering plants. Their findings, published this week in the journal PLOS ONE, could shed light on the current decline in bee species.

Lead author Sandra Rehan, an assistant professor of biological sciences at UNH, worked with colleagues Michael Schwarz at Australia’s Flinders University and Remko Leys at the South Australia Museum to model a mass extinction in bee group Xylocopinae, or carpenter bees, at the end of the Cretaceous and beginning of the Paleogene eras, known as the K-T boundary.

A small carpenter bee. (Credit: Sandra Rehan)

A small carpenter bee. (Credit: Sandra Rehan)

Previous studies have suggested a widespread extinction among flowering plants at the K-T boundary, and it’s long been assumed that the bees who depended upon those plants would have met the same fate. Yet unlike the dinosaurs, “there is a relatively poor fossil record of bees,” says Rehan, making the confirmation of such an extinction difficult.

Rehan and colleagues overcame the lack of fossil evidence for bees with a technique called molecular phylogenetics. Analyzing DNA sequences of four “tribes” of 230 species of carpenter bees from every continent except Antarctica for insight into evolutionary relationships, the researchers began to see patterns consistent with a mass extinction. Combining fossil records with the DNA analysis, the researchers could introduce time into the equation, learning not only how the bees are related but also how old they are.

“The data told us something major was happening in four different groups of bees at the same time,” says Rehan, of UNH’s College of Life Sciences and Agriculture. “And it happened to be the same time as the dinosaurs went extinct.”

While much of Rehan’s work involves behavioral observation of bees native to the northeast of North America, this research taps the computer-heavy bioinformatics side of her research, assembling genomic data to elucidate similarities and differences among the various species over time. Marrying observations from the field with genomic data, she says, paints a fuller picture of these bees’ behaviors over time.

“If you could tell their whole story, maybe people would care more about protecting them,” she says. Indeed, the findings of this study have important implications for today’s concern about the loss in diversity of bees, a pivotal species for agriculture and biodiversity.

“Understanding extinctions and the effects of declines in the past can help us understand the pollinator decline and the global crisis in pollinators today,” Rehan says.

The article, “First evidence for a massive extinction event affecting bees close to the K-T boundary,” was published in the Oct. 23, 2013 edition of PLOS ONE. Funding for the research was provided by Endeavour Research Fellowships (Rehan) and Australian Research Council Discovery Grants (Schwarz).

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state’s flagship public institution, enrolling 12,300 undergraduate and 2,200 graduate students.

High School Student Discovers Skeleton of Baby Dinosaur

A chance find by a high school student led to the youngest, smallest and most complete fossil skeleton yet known from the iconic tube-crested dinosaur Parasaurolophus. The discovery, announced today by the Raymond M. Alf Museum of Paleontology at The Webb Schools, shows that the prehistoric plant-eater sprouted its strange headgear before it celebrated its first birthday. Three-dimensional scans of nearly the entire fossil are freely available online, making this the most digitally-accessible dinosaur to date.

The fossil skeleton was discovered in 2009 by high school student Kevin Terris, within Grand Staircase-Escalante National Monument in southern Utah. Incredibly, the specimen was missed by two professional paleontologists, who walked within several feet of the exposed bones days prior to the discovery. “At first I was interested in seeing what the initial piece of bone sticking out of the rock was,” commented Terris. “When we exposed the skull, I was ecstatic!” Excavation and subsequent cleaning of the fossil, nicknamed “Joe” after a long-time supporter of the Alf Museum whose family funded preparation of the fossil, revealed nearly the entire skeleton of a baby dinosaur measuring only six feet long when it died.

This is the skeleton of the baby Parasaurolophus nicknamed "Joe." (Credit: Raymond M. Alf Museum of Paleontology)

This is the skeleton of the baby Parasaurolophus nicknamed “Joe.” (Credit: Raymond M. Alf Museum of Paleontology)

Detailed study of the skeleton of “Joe” identified it as the most complete specimen yet known for Parasaurolophus (pronounced PAIR-uh-SORE-AH-luf-us), a duck-billed (hadrosaurid) dinosaur that lived throughout western North America around 75 million years ago. The herbivore is notable for a long and hollow bony tube on the top of its skull, which scientists speculate was used like a trumpet to blast sound for communication, as well as a billboard for visual display. Although partial skulls and skeletons of full-grown Parasaurolophus have been known for over 90 years, scientists previously knew little about how Parasaurolophus grew up.

Intriguingly, the new fossil shows that baby Parasaurolophus had a low bump on top of its head, which only later morphed into the curved tube of adults. “Our baby Parasaurolophus is barely one-quarter of adult size, but it had already started growing its crest,” stated lead project scientist Andrew Farke, who is Augustyn Family Curator at the Raymond M. Alf Museum of Paleontology. “This is surprising, because related dinosaurs didn’t sprout their ornamentation until they were at least half-grown. Parasaurolophus had to get an early start in order to form its unique headgear.”

A sample of bone from the leg helped estimate the animal’s age at death. “Dinosaurs have yearly growth rings in their bone tissue, like trees. But we didn’t see even one ring. That means it grew to a quarter of adult size in less than a year,” commented co-author Sarah Werning of Stony Brook University. Although “Joe” was only six feet long and a year old, it would have grown to 25 feet in length as an adult.

The fossil skeleton has yielded a world of previously unknown information about Parasaurolophus and its relatives. Medical scans documented the internal anatomy of the animal’s skull, allowing a reconstruction of its vocal capabilities. “If adult Parasaurolophus had ‘woofers,’ the babies had ‘tweeters.’ The short and small crest of baby ‘Joe’ shows that it may have had a much higher pitch to its call than did adults,” stated Andrew Farke. “Along with the visual differences, this might have helped animals living in the same area to figure out who was the big boss.”

Because of the broad importance of the fossil, researchers have made 3D digital scans of the entire fossil freely available on-line (links via http://www.dinosaurjoe.com). Although portions of other dinosaur fossils have been scanned and distributed in this way before, this the first time that virtually an entire skeleton has been posted. This will allow scientists and the public alike unparalleled access to this fossil.

The study describing the new fossil was published today in the open access scientific journal PeerJ (meaning that anyone can read and download the article for free, and without restrictions). Additionally, the specimen is now on exhibit at the Raymond M. Alf Museum of Paleontology in Claremont, California. Researchers who co-authored the study include Andrew Farke (Raymond M. Alf Museum of Paleontology, Claremont, California), Sarah Werning (University of California Museum of Paleontology, Berkeley, and Stony Brook University, New York), and high school students Derek Chok, Annisa Herrero, and Brandon Scolieri (The Webb Schools, Claremont, California). The fossil was collected under a permit from Grand Staircase-Escalante National Monument and the Bureau of Land Management, Utah.

The Extent of the Preserved Feathers on the Four-Winged Dinosaur Microraptor gui under Ultraviolet Light

Background

The holotype of the theropod non-avian dinosaur Microraptor gui from the Early Cretaceous of China shows extensive preservation of feathers in a halo around the body and with flight feathers associated with both the fore and hindlimbs. It has been questioned as to whether or not the feathers did extend into the halo to reach the body, or had disassociated and moved before preservation. This taxon has important implications for the origin of flight in birds and the possibility of a four-winged gliding phase.

Methodology/Principal Findings

Examination of the specimen under ultraviolet light reveals that these feathers actually reach the body of the animal and were not disassociated from the bones. Instead they may have been chemically altered by the body tissues of the animal meaning that they did not carbonise close into the animal or more likely were covered by other decaying tissue, though evidence of their presence remains.

Conclusions/Significance

These UV images show that the feathers preserved on the slab are genuinely associated with the skeleton and that their arrangement and orientation is likely correct. The methods used here to reveal hidden features of the specimen may be applicable to other specimens from the fossil beds of Liaoning that produced Microraptor.

Figure 1. The holotype of Microraptor gui, IVPP V 13352 under normal light. show more  This shows the preserved feathers (white arrow) and the ‘halo’ around the specimen where they appear to be absent (black arrows). Scale bar at 5 cm.  doi:10.1371/journal.pone.0009223.g001

Figure 1. The holotype of Microraptor gui, IVPP V 13352 under normal light.
This shows the preserved feathers (white arrow) and the ‘halo’ around the specimen where they appear to be absent (black arrows). Scale bar at 5 cm.
doi:10.1371/journal.pone.0009223.g001

Figure 2. The holotype of Microraptor gui, IVPP V 13352 under UV light. show more  Different filters were employed for parts A and B, hence the difference in colour and appearance. A also is labeled to indicate the preserved feathers (grey arrows) and the ‘halo’ around the specimen where they appear to be absent (black arrows) as well as phosphatised tissues (white arrows). Scale bars are 5 cm in both A and B.  doi:10.1371/journal.pone.0009223.g002

Figure 2. The holotype of Microraptor gui, IVPP V 13352 under UV light.
Different filters were employed for parts A and B, hence the difference in colour and appearance. A also is labeled to indicate the preserved feathers (grey arrows) and the ‘halo’ around the specimen where they appear to be absent (black arrows) as well as phosphatised tissues (white arrows). Scale bars are 5 cm in both A and B.
doi:10.1371/journal.pone.0009223.g002

Figure 3. Close up of lower hindlimb of the holotype under UV light. show more  This shows that the feathers do indeed penetrate the halo (grey arrows) when seen in UV and approach or reach the bones. These are not seen in natural light due to the overlying soft tissues seen in figure 2. Scale bar at 5 cm.  doi:10.1371/journal.pone.0009223.g003

Figure 3. Close up of lower hindlimb of the holotype under UV light.
This shows that the feathers do indeed penetrate the halo (grey arrows) when seen in UV and approach or reach the bones. These are not seen in natural light due to the overlying soft tissues seen in figure 2. Scale bar at 5 cm.
doi:10.1371/journal.pone.0009223.g003

Citation: Hone DWE, Tischlinger H, Xu X, Zhang F (2010) The Extent of the Preserved Feathers on the Four-Winged Dinosaur Microraptor gui under Ultraviolet Light. PLoS ONE 5(2): e9223. doi:10.1371/journal.pone.0009223

Editor: Andrew Allen Farke, Raymond M. Alf Museum of Paleontology, United States of America

 

 

The Complicated Birth of a Volcano

They are difficult to reach, have hardly been studied scientifically, and their existence does not fit into current geological models: the Marie Byrd Seamounts off the coast of Antarctica present many riddles to volcanologists. In the international journal “Gondwana Research,” scientists from GEOMAR Helmholtz Centre for Ocean Research Kiel in cooperation with colleagues from the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research just published possible explanations for the origin of these former volcanoes and thus contributed to the decryption of complex processes in the Earth’s interior.

A full chain bag dredge of samples obtained from the Marie Byrd Seamounts is emptied on board of POLARSTERN. (Credit: F. Hauff, GEOMAR)

A full chain bag dredge of samples obtained from the Marie Byrd Seamounts is emptied on board of POLARSTERN. (Credit: F. Hauff, GEOMAR)

Snow storms, ice and glaciers — these are the usual images we associate with the Antarctic. But at the same time it is also a region of fire: the Antarctic continent and surrounding waters are dotted with volcanoes — some of them still active and others extinct for quite some time. The Marie Byrd Seamounts in the Amundsen Sea are in the latter group. Their summit plateaus are today at depths of 2400-1600 meters. Because they are very difficult to reach with conventional research vessels, they have hardly been explored, even though the Marie Byrd Seamounts are fascinating formations. They do not fit any of the usual models for the formation of volcanoes. Now geologists from GEOMAR Helmholtz Centre for Ocean Research Kiel were able to find a possible explanation for the existence of these seamounts on the basis of rare specimens. The study is published in the international journal “Gondwana Research.”

Classic volcanologists differentiate between two types of fire mountains. One type is generated where tectonic plates meet, so the earth’s crust is already cracked to begin with. The other type is formed within the earth’s plates. “The latter are called intraplate volcanoes. They are often found above a so-called mantle plume. Hot material rises from the deep mantle, collects under the earth’s crust, makes its way to the surface and forms a volcano,” said Dr. Reinhard Werner, one of the authors of the current paper. One example are the Hawaiian Islands. But neither of the above models fits the Marie Byrd Seamounts. “There are no plate boundaries in the vicinity and no plumes underground,” says graduate geologist Andrea Kipf from GEOMAR, first author of the study.

To clarify the origin of the Marie Byrd Seamounts, in 2006 the Kiel scientists participated in an expedition of the research vessel POLARSTEN in the Amundsen Sea. They salvaged rock samples from the seamounts and subjected these to thorough geological, volcanological and geochemical investigations after returning to the home labs. “Interestingly enough, we found chemical signatures that are typical of plume volcanoes. And they are very similar to volcanoes in New Zealand and the Antarctic continent,” says geochemist Dr. Folkmar Hauff, second author of the paper.

Based on this finding, the researchers sought an explanation. They found it in the history of tectonic plates in the southern hemisphere. Around 100 million years ago, remains of the former supercontinent Gondwana were located in the area of present Antarctica. A mantle plume melted through this continental plate and cracked it open. Two new continents were born: the Antarctic and “Zealandia,” with the islands of New Zealand still in evidence today. When the young continents drifted in different directions away from the mantle plume, large quantities of hot plume material were attached to their undersides. These formed reservoirs for future volcanic eruptions on the two continents. “This process explains why we find signatures of plume material at volcanoes that are not on top of plumes,” says Dr. Hauff.

But that still does not explain the Marie Byrd Seamounts because they are not located on the Antarctic continent, but on the adjacent oceanic crust instead. “Continental tectonic plates are thicker than the oceanic ones. This ensures, among other things, differences in temperature in the underground,” says volcanologist Dr. Werner. And just as air masses of different temperatures create winds, the temperature differences under the earth’s crust generate flows and movements as well. Thus the plume material, that once lay beneath the continent, was able to shift under the oceanic plate. With disruptions due to other tectonic processes, there were cracks and crevices which allowed the hot material to rise, turn into magma and then- about 60 million years ago — allowed the Marie Byrd Seamounts to grow. “This created islands that are comparable to the Canary Islands today,” explains Andrea Kipf. “Some day the volcanoes became extinct again, wind and weather eroded the cone down to sea level, and other geological processes further eroded the seamounts. Finally, the summit plateaus arrived at the level that we know today,” the PhD student describes the last step of the development.

Based on the previously little investigated Marie Byrd Seamounts, the researchers were able to show another example of how diverse and complex the processes are, that can cause volcanism. “We are still far from understanding all of these processes. But with the current study, we can contribute a small piece to the overall picture,” says Dr. Werner.

Extinct ‘Mega Claw’ Creature Had Spider-Like Brain

Researchers have discovered the earliest known complete nervous system exquisitely preserved in the fossilized remains of a never-before described creature that crawled or swam in the ocean 520 million years ago.

Research led by University of Arizona Regents’ Professor Nick Strausfeld and London Natural History Museum’s Greg Edgecombe has revealed that the ancestors of chelicerates (spiders, scorpions and their kin) branched off from the family tree of other arthropods — including insects, crustaceans and millipedes — more than half a billion years ago.

This is a close-up of the head region of the Alalcomenaeus fossil specimen with the superimposed colors of a microscopy technique revealing the distribution of chemical elements in the fossil. Copper shows up as blue, iron as magenta and the CT scans as green. The coincidence of iron and CT denote nervous system. The creature boasted two pairs of eyes (ball-shaped structures at the top). (Credit: N. Strausfeld/University of Arizona)

This is a close-up of the head region of the Alalcomenaeus fossil specimen with the superimposed colors of a microscopy technique revealing the distribution of chemical elements in the fossil. Copper shows up as blue, iron as magenta and the CT scans as green. The coincidence of iron and CT denote nervous system. The creature boasted two pairs of eyes (ball-shaped structures at the top). (Credit: N. Strausfeld/University of Arizona)

The team discovered the earliest known complete nervous system exquisitely preserved in the fossilized remains of a never-before described creature that crawled or swam in the ocean 520 million years ago.

Described in the current issue of the journal Nature, the find belongs to an extinct group of marine arthropods known as megacheirans (Greek for “large claws”) and solves the long-standing mystery of where this group fits in the tree of life.

“We now know that the megacheirans had central nervous systems very similar to today’s horseshoe crabs and scorpions,” said the senior author of the study, Nicholas Strausfeld, a Regents’ Professor in the University of Arizona’s department of neuroscience. “This means the ancestors of spiders and their kin lived side by side with the ancestors of crustaceans in the Lower Cambrian.”

The scientists identified the 3-centimeter-long creature (a little over an inch) unearthed from the famous Chengjiang formation near Kunming in southwest China, as a representative of the extinct genus Alalcomenaeus. Animals in this group had an elongated, segmented body equipped with about a dozen pairs of body appendages enabling the animal to swim or crawl or both. All featured a pair of long, scissor-like appendages attached to the head, most likely for grasping or sensory purposes, which gave them their collective name, megacheirans.

Co-author Greg Edgecombe said that some paleontologists had used the external appearance of the so-called great appendage to infer that the megacheirans were related to chelicerates, based on the fact that the great appendage and the fangs of a spider or scorpion both have an “elbow joint” between their basal part and their pincer-like tip.

“However, this wasn’t rock solid because others lined up the great appendage either a segment in front of spider fangs or one segment behind them,” Edgecombe said. “We have now managed to add direct evidence from which segment the brain sends nerves into the great appendage. It’s the second one, the same as in the fangs, or chelicerae. For the first time we can analyze how the segments of these fossil arthropods line up with each other the same way as we do with living species — using their nervous systems.”

The team analyzed the fossil by applying different imaging and image processing techniques, taking advantage of iron deposits that had selectively accumulated in the nervous system during fossilization.

To make the neural structures visible, the researchers used computed tomography (CT), a technique that reconstructs 3-D features within in the specimen. However, “the CT scan didn’t show the outline of the nervous systems unambiguously enough,” Strausfeld said, “while a scanning laser technique mapping the distribution of chemical elements showed iron deposits outlining the nervous system almost as convincingly but with minor differences.”

Next, the group applied advanced imaging techniques to the scans, first overlaying the magenta color of the iron deposit scan with the green color of the CT scan, then subtracting the two.

“We discarded any image data that were not present in both scans,” Strausfeld explained. “Where the two overlapped, the magenta and the green added to each other, revealing the preserved nervous system as a white structure, which we then inverted.”

This resulted in what resembled a negative X-ray photograph of the fossil.

“The white structures now showed up as black,” Strausfeld said, “and out popped this beautiful nervous system in startling detail.”

Comparing the outline of the fossil nervous system to nervous systems of horseshoe crabs and scorpions left no doubt that 520-million year-old Alalcomenaeus was a member of the chelicerates.

Specifically, the fossil shows the typical hallmarks of the brains found in scorpions and spiders: Three clusters of nerve cells known as ganglia fused together as a brain also fused with some of the animal’s body ganglia. This differs from crustaceans where ganglia are further apart and connected by long nerves, like the rungs of a rope ladder.

Other diagnostic features include the forward position of the gut opening in the brain and the arrangement of optic centers outside and inside the brain supplied by two pairs of eyes, just like in horseshoe crabs.

To make the analysis more robust, the researchers then added these features to an existing catalog of about 150 characteristics used in constructing evolutionary relationships among arthropods based on neuroanatomical features.

“Greg plugged these characteristics into a computer-based cladistic analysis to ask, ‘where does this fossil appear in a relational tree?'” Strausfeld said. “Our fossil of Alalcomenaeus came out with the modern chelicerates.”

But according to Strausfeld, the story doesn’t end there.

“The prominent appendages that gave the megacheirans their name were clearly used for grasping and holding and probably for sensory inputs. The parts of the brain that provide the wiring for where these large appendages arise are very large in this fossil. Based on their location, we can now say that the biting mouthparts in spiders and their relatives evolved from these appendages.”

Less than a year ago, the same research team published the discovery of a fossilized brain in the 520 million year-old fossil Fuxianhuia protensa, showing unexpected similarity to the complex brain of a modern crustacean.

“Our new find is exciting because it shows that mandibulates (to which crustaceans belong) and chelicerates were already present as two distinct evolutionary trajectories 520 million years ago, which means their common ancestor must have existed much deeper in time,” Strausfeld said. “We expect to find fossils of animals that have persisted from more ancient times, and I’m hopeful we will one day find the ancestral type of both the mandibulate and chelicerate nervous system ground patterns. They had to come from somewhere. Now the search is on.”

For this research project, Strausfeld teamed up with Gengo Tanaka of the Japan Agency for Marine-Earth Science and Technology in Yokosuka, Japan; Xianguang Hou, director of the Yunnan Key Laboratory for Paleobiology at Yunnan University in Kunming, China, and his colleague Xiaoya Ma who is presently working with Gregory Edgecombe in the paleontology department of the Natural History Museum, London.

Unique Skull Find Rebuts Theories On Species Diversity in Early Humans

This is the best-preserved fossil find yet from the early era of our genus. The particularly interesting aspect is that it displays a combination of features that were unknown to us before the find. The skull, found in Dmanisi by anthropologists from the University of Zurich as part of a collaboration with colleagues in Georgia funded by the Swiss National Science Foundation, has the largest face, the most massively built jaw and teeth and the smallest brain within the Dmanisi group.

Face of Dmanisi skull 5. (Credit: Malkhaz Machavariani, Georgian National Museum)

Face of Dmanisi skull 5. (Credit: Malkhaz Machavariani, Georgian National Museum)

find yet from the early era of our genus. The particularly interesting aspect is that it displays a combination of features that were unknown to us before the find. The skull, found in Dmanisi by anthropologists from the University of Zurich as part of a collaboration with colleagues in Georgia funded by the Swiss National Science Foundation, has the largest face, the most massively built jaw and teeth and the smallest brain within the Dmanisi group.It is the fifth skull to be discovered in Dmanisi. Previously, four equally well-preserved hominid skulls as well as some skeletal parts had been found there. Taken as a whole, the finds show that the first representatives of the genus Homo began to expand from Africa through Eurasia as far back as 1.85 million years ago.

Diversity within a species instead of species diversity

Because the skull is completely intact, it can provide answers to various questions which up until now had offered broad scope for speculation. These relate to none less than the evolutionary beginning of the genus Homo in Africa around two million years ago at the beginning of the Ice Age, also referred to as the Pleistocene. Were there several specialized «Homo» species in Africa at the time, at least one of which was able to spread outside of Africa too? Or was there just one single species that was able to cope with a variety of ecosystems? Although the early Homo finds in Africa demonstrate large variation, it has not been possible to decide on answers to these questions in the past. One reason for this relates to the fossils available, as Christoph Zollikofer, anthropologist at the University of Zurich, explains: “Most of these fossils represent single fragmentary finds from multiple points in space and geological time of at least 500,000 years. This ultimately makes it difficult to recognize variation among species in the African fossils as opposed to variation within species.”

As many species as there are researchers

Marcia Ponce de León, who is also an anthropologist at the University of Zurich, points out another reason: paleoanthropologists often tacitly assumed that the fossil they had just found was representative for the species, i.e. that it aptly demonstrated the characteristics of the species. Statistically this is not very likely, she says, but nevertheless there were researchers who proposed up to five contemporary species of early Homo in Africa, including Homo habilis, Homo rudolfensis, Homo ergaster and Homo erectus. Ponce de León sums up the problem as follows: “At present there are as many subdivisions between species as there are researchers examining this problem.”

Tracking development of «Homo erectus» over one million years thanks to a change in perspective

Dmanisi now offers the key to the solution. According to Zollikofer, the reason why Skull 5 is so important is that it unites features that have been used previously as an argument for defining different African “species”. In other words: “Had the braincase and the face of the Dmanisi sample been found as separate fossils, they very probably would have been attributed to two different species.” Ponce de León adds: “It is also decisive that we have five well-preserved individuals in Dmanisi whom we know to have lived in the same place and at the same time.” These unique circumstances of the find make it possible to compare variation in Dmanisi with variation in modern human and chimpanzee populations. Zollikofer summarizes the result of the statistical analyses as follows: “Firstly, the Dmanisi individuals all belong to a population of a single early Homo species. Secondly, the five Dmanisi individuals are conspicuously different from each other, but not more different than any five modern human individuals, or five chimpanzee individuals from a given population.”

Diversity within a species is thus the rule rather than the exception. The present findings are supported by an additional study recently published in the journal PNAS. In that study, Ponce de León, Zollikofer and further colleagues show that differences in jaw morphology between the Dmanisi individuals are mostly due to differences in dental wear.

This shows the need for a change in perspective: the African fossils from around 1.8 million years ago likely represent representatives from one and the same species, best described as Homo erectus. This would suggest that «Homo erectus» evolved about 2 million years ago in Africa, and soon expanded through Eurasia – via places such as Dmanisi – as far as China and Java, where it is first documented from about 1.2 million years ago. Comparing diversity patterns in Africa, Eurasia and East Asia provides clues on the population biology of this first global human species.

This makes Homo erectus the first “global player” in human evolution. Its redefinition now provides an opportunity to track this fossil human species over a time span of 1 million years.

Dinosaur Diary : Spinosaurus

Period: Late Cretacious

Order, Suborder, Family: Saurischia, Theropoda, Spinosauridae

Location: Africa (Egypt, Niger)

Length: 40 feet (12 meters)

spinosaurus

spinosaurus

In 1912, a German paleontological expedition discovered the remains of several new Late Cretaceous dinosaurs in Egypt. Spinosaurus, a large theropod, was one of the new dinosaurs. It got its name, which means “spined reptile,” because of the tall spines on its vertebrae (bones of the spine). Some spines are over five feet tall. They formed a sail along the animal’s back much like those of the Permian mammallike reptile Dimetrodon. It is interesting that an unrelated fin-backed dinosaur, the plant-eating ornithopod Ouranosaurus, has been found from nearly the same age in nearby North Africa. Two unrelated fin-backed dinosaurs in the same area may mean that the climate influenced the development of fin-backed animals. The fin may have been a thermal regulator, releasing heat on hot days and absorbing heat on colder days. It also may have been used as a display to attract members of its own species and scare other species.

Even though the skeleton is incomplete, Spinosaurus shows several other interesting features. It was a long theropod. The teeth are different from other theropod teeth because the serrations (the cutting ridges along the sides) were very small. Even more unusual is that the teeth were shaped like cones rather than blades. These tooth features, along with the shape of the skull bones, show that Spinosaurus is similar to Baryonyx. They may both belong in the family Spinosauridae. Spinosaurus may have eaten fish, but it is difficult to imagine such a large dinosaur catching enough fish to keep it alive. It more likely preyed upon land animals and fish.

The original skeleton of this theropod was destroyed in World War II. Recently, however, a piece of a skull bone belonging to another Spinosaurus was found on a shelf in a German museum. Perhaps another expedition to Egypt will uncover more skeletons so that we can learn more about Spinosaurus.

Iron in Earth’s Core Weakens Before Melting

The iron in the Earth’s inner core weakens dramatically before it melts, explaining the unusual properties that exist in the moon-sized solid centre of our planet that have, up until now, been difficult to understand. Scientists use seismic waves — pulses of energy generated during earthquakes — to measure what is happening in the Earth’s inner core, which at 6000 km beneath our feet is completely inaccessible.

The iron in Earth's inner core weakens dramatically before it melts, explaining the unusual properties that exist in the moon-sized solid center of our planet that have, up until now, been difficult to understand. (Credit: iStockphoto)

The iron in Earth’s inner core weakens dramatically before it melts, explaining the unusual properties that exist in the moon-sized solid center of our planet that have, up until now, been difficult to understand. (Credit: iStockphoto)

Problematically for researchers, the results of seismic measurements consistently show that these waves move through the Earth’s solid inner core at much slower speeds than predicted by experiments and simulations. Specifically, a type of seismic wave called a ‘shear wave’ moves particularly slowly through the Earth’s core relative to the speed expected for the material — mainly iron — from which the core is made. Shear waves move through the body of the object in a transverse motion — like waves in a rope, as opposed to waves moving through a slinky spring. Now, in a paper published in Science, scientists from UCL have proposed a possible explanation. They suggest that the iron in the Earth’s core may weaken dramatically just before melting, becoming much less stiff. The team used quantum mechanical calculations to evaluate the wave velocities of solid iron at inner-core pressure up to melting.

They calculated that at temperatures up to 95% of what is needed to melt iron in the Earth’s inner core, the speed of the seismic waves moving through the inner core decreases linearly but, after 95%, it drops dramatically. At about 99% of the melting temperature of iron, the team’s calculated velocities agree with seismic data for the Earth’s inner core. Since independent geophysical results suggest that the inner core is likely to be at 99-100% of its melting temperature, the results presented in this paper give a compelling explanation as to why the seismic wave velocities are lower than those predicted previously. Professor Lidunka Vočadlo, from the UCL department of Earth Sciences and an author of the paper said: “The Earth’s deep interior still holds many mysteries that scientists are trying to unravel. “The proposed mineral models for the inner core have always shown a faster wave speed than that observed in seismic data. This mismatch has given rise to several complex theories about the state and evolution of the Earth’s core.” The authors stress that this is not the end of the story as other factors need to be taken into account before a definitive core model can be made. As well as iron, the core contains nickel and light elements, such as silicon and sulphur.

Professor Vočadlo said: “The strong pre-melting effects in iron shown in our paper are an exciting new development in understanding the Earth’s inner core. We are currently working on how this result is affected by the presence of other elements, and we may soon be in a position to produce a simple model for the inner core that is consistent with seismic and other geophysical measurements. “