WFS Archive : Only second Jurassic dinosaur ever found in Antarctica

A new genus and species of dinosaur from the Early Jurassic has been discovered in Antarctica. The massive plant-eating primitive sauropodomorph is called Glacialisaurus hammeri and lived about 190 million years ago.

The recently published description of the new dinosaur is based on partial foot, leg and ankle bones found on Mt. Kirkpatrick near the Beardmore Glacier in Antarctica at an elevation of more than 13,000 feet.

“The fossils were painstakingly removed from the ice and rock using jackhammers, rock saws and chisels under extremely difficult conditions over the course of two field seasons,” said Nathan Smith, a graduate student at The Field Museum. “They are important because they help to establish that primitive sauropodomorph dinosaurs were more broadly distributed than previously thought, and that they coexisted with their cousins, the true sauropods.”

The findings were published online Dec. 5 in the Acta Palaeontologica Poloncica. Diego Pol, a paleontologist at the Museo Paleontológico Egidio Feruglio in Chubut, Argentina, is the other co-author of the research.

Sauropodomorph dinosaurs were the largest animals to ever walk the earth. They were long-necked herbivores and include Diplodocus and Apatosaurus. Their sister group is the theropods, which include Tyrannosaurus, Velociraptor, and modern birds.

Glacialisaurus hammeri was about 20-25 feet long and weighed about 4-6 tons . It was named after Dr. William Hammer, a professor at Augustana College who led the two field trips to Antarctica that uncovered the fossils. Glacialisaurus belongs to the sauropodomorph family Massopsondylidae, which may represent a secondary radiation of basal sauropodomorphs during the Early Jurassic.

Currently, the development and evolutionary relationships of the sauropodomorph dinosaurs are hotly debated by paleontologists. This discovery, however, helps to resolve some of this debate by establishing two things. First, it shows that sauropodomorphs were widely distributed in the Early Jurassic-not only in China, South Africa, South America and North America, but also in Antarctica.

“This was probably due to the fact that major connections between the continents still existed at that time, and because climates were more equitable across latitudes than they are today,” Smith said.

Second, the discovery of Glacialisaurus hammeri shows that primitive sauropodomorphs probably coexisted with true sauropods for an extended period of time. The recent discovery of a possible sauropod at roughly the same location in Antarctica lends additional evidence to the theory that the earliest sauropods coexisted with their basal sauropodomorph cousins, including Glacialisaurus hammeri, during the Late Triassic and Early Jurassic, Smith and Pol conclude in their research findings.

Note: This story has been adapted from a news release issued by the Field Museum 2007

WFS Dinosaur Diary: “Eotyrannus”

Eotyrannus (meaning “dawn tyrant”) was a genus of tyrannosauroid theropod dinosaur hailing from the Early Cretaceous Wessex Formation beds, included in Wealden Group, located in the southwest coast of the Isle of Wight, United Kingdom. The remains (MIWG1997.550), consisting of assorted skull, axial skeleton and appendicular skeleton elements, from a juvenile or subadult, found in a plant debris clay bed, were described by Hutt et al. in early 2001. The etymology of the generic name refers to the animals classification as an early tyrannosaur or “tyrant lizard”, while the specific name honors the discoverer of the fossil.

Eotyrannus

Eotyrannus

Eotyrannus has the following tyrannosauroid characters: serrated premaxillary teeth with a D cross section, proportionally elongate tibiae and metatarsals. Primitive characters for Tyrannosauroidea are the elongate neck vertebrae and the long, well-developed arms forelimbs along with the undecorated dorsal surface of the skull, unlike the more advanced tyrannosaurids. However this animal, proportionally, has one of the longest hands among non-avialan theropods known to date. This theropod would be a probable predator of such herbivorous dinosaurs as Hypsilophodon.

FACT SHEET

Meaning – Eotyrannus means “dawn tyrant” or “early tyrant”
Pronounced – e-o-tie-RAN-us
Named By – Hutt, Naish, Martill, Barker and Newbery
When Named – 2001

DIET: Carnivore (meat-eater)
SIZE: Length – 15 ft (4.5 m) long
Weight – ?
WHEN IT LIVED: Middle Cretaceous period, about 120 to 125 million years ago
WHERE IT LIVED: Fossils have been found in the Wessex Formation, Isle of Wight, off the coast of Great Britain, Europe.

FOSSILS:

What was Found – A 40-percent complete fossil was found in 1997 (including the front half of the skull).
Who Found the Fossils – Eotyrannus was found by a team headed by Darren Naish (Univ. of Portsmouth).

CLASSIFICATION:
• Kingdom Animalia (animals)
• Phylum Chordata (having a hollow nerve chord ending in a brain)
• Class Archosauria (diapsids with socket-set teeth, etc.)
• Order Saurischia – lizard-hipped dinosaurs
• Suborder Theropoda – bipedal carnivores
• Tetanura – advanced theropods
• Infraorder Coelurosauria – lightly-built fast-running predators with hollow bones and large brains
• Superfamily Maniraptoriformes – advanced coelurosaurs with a fused wrist bone
• Family Tyrannosauroidea – huge predators with small arms and two-fingered hands (the third finger was very tiny). Tyrannosaurids include T. rex, Albertosaurus, Alectrosaurus, Alioramus, Chingkankousaurus, Daspletosaurus, Gorgosaurus, Nanotyrannus, Prodeinodon, Tarbosaurus, etc.
• Genus Eotyrannus
• Species E. lengi (type species named by Hutt, Naish, Martill, Barker & Newbery, 2001), named to honor Gavin Leng, who found the first fossil on the Isle of Wight.

Earth grow a new layer under an Icelandic volcano

 

New research into an Icelandic eruption has shed light on how the Earth’s crust forms, according to a paper published today in Nature.

When the Bárðarbunga volcano, which is buried beneath Iceland’s Vatnajökull ice cap, reawakened in August 2014, scientists had a rare opportunity to monitor how the magma flowed through cracks in the rock away from the volcano. The molten rock forms vertical sheet-like features known as dykes, which force the surrounding rock apart.

Study co-author Professor Andy Hooper from the Centre for Observation and Modelling of Earthquakes, volcanoes and Tectonics (COMET) at the University of Leeds explained: “New crust forms where two tectonic plates are moving away from each other. Mostly this happens beneath the oceans, where it is difficult to observe.

“However, in Iceland this happens beneath dry land. The events leading to the eruption in August 2014 are the first time that such a rifting episode has occurred there and been observed with modern tools, like GPS and satellite radar.”

Although it has a long history of eruptions, Bárðarbunga has been increasingly restless since 2005. There was a particularly dynamic period in August and September this year, when more than 22,000 earthquakes were recorded in or around the volcano in just four weeks, due to stress being released as magma forced its way through the rock.

Using GPS and satellite measurements, the team were able to track the path of the magma for over 45km before it reached a point where it began to erupt, and continues to do so to this day. The rate of dyke propagation was variable and slowed as the magma reached natural barriers, which were overcome by the build-up of pressure, creating a new segment.

The dyke grows in segments, breaking through from one to the next by the build up of pressure. This explains how focused upwelling of magma under central volcanoes is effectively redistributed over large distances to create new upper crust at divergent plate boundaries, the authors conclude.

As well as the dyke, the team found ‘ice cauldrons’ – shallow depressions in the ice with circular crevasses, where the base of the glacier had been melted by magma. In addition, radar measurements showed that the ice inside Bárðarbunga’s crater had sunk by 16m, as the volcano floor collapsed.

Artist's conception illustrating the three-dimensional geometry of the plumbing (left) and timing of events (right column) at Eyjafjallajökull volcano in Iceland. The complicated plumbing inside the volcano consists of inter--connected conduits, sills, and dikes that allow magma to rise from deep within the Earth. The first three panels in the time series show distinct episodes of magmatic intrusions that caused measurable deformation and seismic events in 1994, 1999, and in the first several months of 2010. No eruptive activity occurred during this period of unrest. Each intrusive episode inflated a different section of the plumbing, drawn and modeled as sills at approximately 5 km depth. The fourth panel illustrates the first eruption, between 20 March and 12 April 2010, when basaltic magma (orange) erupted onto the Earth's surface on the flank of the mountain. The fifth panel shows the second eruption, between 14 April and 22 May, when a different type of magma (trachyandesite, shown in red), erupted explosively at the ice-capped summit (1600 m elevation). The interaction of magma and ice initially increased the explosive activity, generating a plume of particles that rose as high as the 30,000-foot flight level and disrupted air traffic across Europe for weeks. [show less] Credit: Illustration by Zina Deretsky, U.S. National Science Foundation

Artist’s conception illustrating the three-dimensional geometry of the plumbing (left) and timing of events (right column) at Eyjafjallajökull volcano in Iceland. The complicated plumbing inside the volcano consists of inter–connected conduits, sills, and dikes that allow magma to rise from deep within the Earth. The first three panels in the time series show distinct episodes of magmatic intrusions that caused measurable deformation and seismic events in 1994, 1999, and in the first several months of 2010. No eruptive activity occurred during this period of unrest. Each intrusive episode inflated a different section of the plumbing, drawn and modeled as sills at approximately 5 km depth. The fourth panel illustrates the first eruption, between 20 March and 12 April 2010, when basaltic magma (orange) erupted onto the Earth’s surface on the flank of the mountain. The fifth panel shows the second eruption, between 14 April and 22 May, when a different type of magma (trachyandesite, shown in red), erupted explosively at the ice-capped summit (1600 m elevation). The interaction of magma and ice initially increased the explosive activity, generating a plume of particles that rose as high as the 30,000-foot flight level and disrupted air traffic across Europe for weeks.
Credit: Illustration by Zina Deretsky, U.S. National Science Foundation

COMET PhD student Karsten Spaans from the University of Leeds, a co-author of the study, added: “Using radar measurements from space, we can form an image of caldera movement occurring in one day. Usually we expect to see just noise in the image, but we were amazed to see up to 55cm of subsidence.”Like other liquids, magma flows along the path of least resistance, which explains why the dyke at Bárðarbunga changed direction as it progressed.  Magma flow was influenced mostly by the lie of the land to start with, but as it moved away from the steeper slopes, the influence of plate movements became more important.

Summarising the findings, Professor Hooper said: “Our observations of this event showed that the magma injected into the crust took an incredibly roundabout path and proceeded in fits and starts.

“Initially we were surprised at this complexity, but it turns out we can explain all the twists and turns with a relatively simple model, which considers just the pressure of rock and ice above, and the pull exerted by the plates moving apart.”

Source: University of Leeds. “Scientists observe the Earth grow a new layer under an Icelandic volcano.” ScienceDaily. ScienceDaily, 15 December 2014. <www.sciencedaily.com/releases/2014/12/141215114101.htm>.

Shedding new light on diet of extinct animals

A study of tooth enamel in mammals living today in the equatorial forest of Gabon could ultimately shed light on the diet of long extinct animals, according to new research from the University of Bristol.

Reconstructing what extinct organisms fed on can be a real challenge. Scientists use a variety of methods including the structure of an animal’s bones, analysis of its stomach contents and the patterns of wear left on the surface of its teeth. Geochemical methods have also proved useful but can be limited by poor preservation of the animal’s remains.

Dr Jeremy Martin, formerly of Bristol’s School of Earth Sciences and now at the Laboratoire de Géologie de Lyon: terre, planètes et environnement, University of Lyon/ENS de Lyon, and colleagues found that magnesium isotopes are particularly well suited to deciphering the diet of living mammals and, when used in conjunction with other methods such as carbon isotopes, they could open up new perspectives on the study of fossilised animals.

Dr Martin said: “Most chemical elements exist in distinct forms called isotopes which are characterized by different masses. Therefore, all the isotopes of an element will behave differently during a chemical reaction preferentially sorting out heavier ones from lighter ones.”

As noted by Dr Balter, who took part in the study: “Biological processes such as digestion involve important isotopic fractionations of the various elements assimilated through food consumption so the stable isotope composition of an organism tends to reflect its diet — we are what we eat.”

Scientists know that the carbon and nitrogen isotopes preserved in bone collagen can give direct evidence about an animal’s food intake. However, because of the rapid decay of organic matter, these inferences are limited to the recent past.

Dr Martin and colleagues explored the isotopic variability of one of the major elements that compose tooth apatite, the hardest biological structure to retain its pristine signal throughout the fossil record.

Teeth from various mammals living today in the equatorial forest of Gabon were purified for magnesium isotopes. The results show that the isotope ratios of magnesium 26 mg/24 mg increase from herbivore to higher-level consumers (such as carnivores) and, when used in conjunction with other geochemical proxies, serve as a strong basis to infer the diet of mammals.

Dr Martin said: “Many fossil groups do not have living analogues and inferring their diet is far from clear. Applying a new perspective to palaeoecology by using non-traditional isotopes (such as magnesium or calcium in conjunction with traditional approaches) holds great promise for our understanding of how such ancient organisms interacted with each other.”

fossil fish with rod and cones

Scientists have discovered a fossilized fish so well preserved that the rods and cones in its 300-million-year-old eyeballs are still visible under a scanning electron microscope.
lRelated New record: Ethereal deep-sea fish lives 5 miles underwater

It is the first time that fossilized photoreceptors from a vertebrate eye have ever been found, according to a paper published Tuesday in Nature Communications. The researchers say the discovery also suggests that fish have been seeing the world in color for at least 300 million years.Rods and cones are cells that line the retina in our eyes. Rods are long and thin, and more sensitive to light than cones. However, cones, which are triangular, allow us to see in color.Both these cells rely on pigments to absorb light. Using chemical analysis, the scientists found evidence of one of these pigments — melanin — in the fossilized eye as well.

The fish pictured above is about 10 centimeters long. It was found in the Hamilton Quarry in Kansas, which was once a shallow lagoon. Fossils from this area are remarkably well preserved because they were buried very quickly in sediments in the lagoon, said Gengo Tanaka of Kumamoto University in Japan, the lead author of the paper.In the case of this fish, an extinct species called Acanthodes bridgei, the preservation process probably also got some help from bacterial activity that left a thin film of phosphate over the eyes before it was buried.

Tanaka said that gills and pigments on other parts of the fish were also preserved. However, he had not looked to see whether organs and nerves were intact as well.The researchers compared the fossilized fish eye to the modern-day fish Rhinogobius, which is similar in size to A. bridgei and which also lives in slightly salty water. They found that the ratio of rods to cones was similar in both fish, which suggests A. bridgei was more active during the day and relied on its vision to make a living.

Tanaka said the discovery could inform the study of many vertebrates like dinosaurs, birds and other fossil fish. Scientists had thought that modern eyes had developed hundreds of millions of years ago. Now, they have definitive proof.

Ancient, hydrogen-rich waters deep underground

A team of scientists, led by the University of Toronto’s Barbara Sherwood Lollar, has mapped the location of hydrogen-rich waters found trapped kilometres beneath Earth’s surface in rock fractures in Canada, South Africa and Scandinavia.

Common in Precambrian Shield rocks — the oldest rocks on Earth — the ancient waters have a chemistry similar to that found near deep sea vents, suggesting these waters can support microbes living in isolation from the surface.

The study, to be published in Nature on December 18, includes data from 19 different mine sites that were explored by Sherwood Lollar, a geoscientist at U of T’s Department of Earth Sciences, U of T senior research associate Georges Lacrampe-Couloume, and colleagues at Oxford and Princeton universities.

Energy-rich waters discharge kilometers below the surface in a South African mine. Credit: G. Borgonie, 2014

Energy-rich waters discharge kilometers below the surface in a South African mine.
Credit: G. Borgonie, 2014

The scientists also explain how two chemical reactions combine to produce substantial quantities of hydrogen, doubling estimates of global production from these processes which had previously been based only on hydrogen coming out of the ocean floor.

“This represents a quantum change in our understanding of the total volume of Earth’s crust that may be habitable,” said Sherwood Lollar.

“Until now, none of the estimates of global hydrogen production sustaining deep microbial populations had included a contribution from the ancient continents. Since Precambrian rocks make up more than 70 per cent of the surface of Earth’s crust, Sherwood Lollar likens these terrains to a “sleeping giant,” a huge area that has now been discovered to be a source of possible energy for life,” she said.

One process, known as radiolytic decomposition of water, involves water undergoing a breakdown into hydrogen when exposed to radiation. The other is a chemical reaction called serpentization, a mineral alteration reaction that is common in such ancient rocks.

This study has important implications for the search for deep microbial life. Quantifying the global hydrogen budget is key to understanding the amount of Earth’s biomass that is in the subsurface, as many deep ecosystems contain chemolithotrophic — so-called “rock-eating” — organisms that consume hydrogen. In the deep gold mines of South Africa, and under the sea, at hydrothermal vents where breaks in the fissure of Earth’s surface that release geothermally heated waters — hydrogen-rich fluids host complex microbial communities that are nurtured by the chemicals dissolved in the fluids. This study identifies a global network of sites with hydrogen-rich waters that will be targeted for exploration for deep life over the coming years.

Further, because Mars — like the Precambrian crust — consists of billions-of-year-old rocks with hydrogen-producing potential, this finding has ramifications for astrobiology. “If the ancient rocks of Earth are producing this much hydrogen, it may be that similar processes are taking place on Mars,” said Sherwood Lollar.

Other key members of the research team are Chris Ballentine of Oxford University, Tulis Onstott at Princeton University and Georges Lacrampe-Couloume of the University of Toronto. The research was funded by the Canada Research Chairs program, the Natural Sciences & Engineering Research Council, the Sloan Foundation Deep Carbon Observatory, the Canadian Space Agency and the National Science Foundation.

Conotubus fossils provide new clues about fossil formation

A new study from University of Missouri and Virginia Tech researchers is challenging accepted ideas about how ancient soft-bodied organisms become part of the fossil record. Findings suggest that bacteria involved in the decay of those organisms play an active role in how fossils are formed — often in a matter of just a few tens to hundreds of years. Understanding the relationship between decay and fossilization will inform future study and help researchers interpret fossils in a new way.

“The vast majority of the fossil record is composed of bones and shells,” said James Schiffbauer, assistant professor of geological sciences in the College of Arts and Science at MU. “Fossils of soft-bodied animals like worms and jellyfish, however, provide our only views onto the early evolution of animal life. Most hypotheses as to the preservation of these soft tissues focus on passive processes, where normal decay is halted or impeded in some way, such as by sealing off the sediments where the animal is buried. Our team is instead detailing a scenario where the actual decay helped ‘feed’ the process turning the organisms into fossils — in this case, the decay of the organisms played an active role in creating fossils.”

Conotubus. Three-dimensionally pyritized tube-worm like fossils, Conotubus, from the 550 million year old Gaojiashan Lagerstätte, Shaanxi Province, South China. Credit: Yaoping Cai, Northwest University, Xi'an, China.

Conotubus. Three-dimensionally pyritized tube-worm like fossils, Conotubus, from the 550 million year old Gaojiashan Lagerstätte, Shaanxi Province, South China.
Credit: Yaoping Cai, Northwest University, Xi’an, China.

Schiffbauer studied a type of fossil animal from the Ediacaran Period called Conotubus, which lived more than 540 million years ago. He noted that these fossils are either replicated by, or associated with, pyrite — commonly called fool’s gold. The tiny fossils are tube-shaped and believed to have been composed of substances similar at least in hardness to human fingernails. These fossilized tubes are all that remain of the soft-bodied animals that inhabited them and most likely resembled worms or sea anemone-like animals.

“Most of the animals that had once lived on the Earth — with estimates eclipsing 10 billion species — were never preserved in the fossil record, but in our study we have a spectacular view of a tinier fraction of soft-bodied animals,” said Shuhai Xiao, professor of geobiology at Virginia Tech and a co-author on this study. “We asked the important questions of how, and under what special conditions, these soft-tissued organisms can escape the fate of complete degradation and be preserved in the rock record.”

Schiffbauer and his team performed a sophisticated suite of chemical analyses of these fossils to determine what caused the pyrite to form. They found that the fool’s gold on the organisms’ outer tube formed when bacteria first began consuming the animal’s soft tissues, with the decay actually promoting the formation of pyrite.

“Normally, the Earth is good at cleaning up after itself,” Schiffbauer said. “In this case, the bacteria that helped break down these organisms also are responsible for preserving them as fossils. As the decay occurred, pyrite began replacing and filling in space within the animal’s exoskeleton, preserving them. Additionally, we found that this process happened in the space of a few years, perhaps even as low as 12 to 800. Ultimately, these new findings will help scientists to gain a better grasp of why these fossils are preserved, and what features represent the fossilization process versus original biology, so we can better reconstruct the evolutionary tree of life.

Shortening tails gave early birds a leg up

A radical shortening of their bony tails over 100 million years ago enabled the earliest birds to develop versatile legs that gave them an evolutionary edge, a new study shows.

A team led by Oxford University scientists examined fossils of the earliest birds from the Cretaceous Period, 145-66 million years ago, when early birds, such as Confuciusornis, Eoenantiornis, and Hongshanornis, lived alongside their dinosaur kin. At this point birds had already evolved powered flight, necessitating changes to their forelimbs, and the team investigated how this new lifestyle related to changes in their hind limbs (legs).

The team made detailed measurements of early bird fossils from all over the world including China, North America, and South America. An analysis of this data showed that the loss of their long bony tails, which occurred after flight had evolved, led to an explosion of diversity in the hind limbs of early birds, prefiguring the amazing variety of talons, stilts, and other specialised hind limbs that have helped to make modern birds so successful.

A report of the research is published this week in Proceedings of the Royal Society B.

This image shows fossil birds from the time of dinosaurs [left image: Eoenatiornis, right image: Hongshanornis] showing they had diverse types of legs. Credit: Roger Close

This image shows fossil birds from the time of dinosaurs [left image: Eoenatiornis, right image: Hongshanornis] showing they had diverse types of legs.
Credit: Roger Close

‘These early birds were not as sophisticated as the birds we know today — if modern birds have evolved to be like stealth bombers then these were more like biplanes,’ said Dr Roger Benson of Oxford University’s Department of Earth Sciences, who led the research. ‘Yet what surprised us was that despite some still having primitive traits, such as teeth, these early birds display an incredibly diverse array of versatile legs.’By comparing measurements of the main parts of the legs of early birds — upper leg, shin, and foot — to those of their dinosaur relatives Dr Benson and co-author Dr Jonah Choiniere of the University of the Witwatersrand, South Africa, were able to determine whether bird leg evolution was exceptional compared to leg evolution in dinosaurs.

‘Our work shows that, whilst they may have started off as just another type of dinosaur, birds quickly made a rather special evolutionary breakthrough that gave them abilities and advantages that their dinosaur cousins didn’t have,’ said Dr Rogers. ‘Key to this special ‘birdness’ was losing the long bony dinosaur tail — as soon as this happened it freed up their legs to evolve to become highly versatile and adaptable tools that opened up new ecological niches.’

It was developing these highly versatile legs, rather than powered flight, that saw the evolutionary diversification of early birds proceed faster than was generally true of other dinosaurs.

Bridgmanite:Earth’s most abundant mineral

An ancient meteorite and high-energy X-rays have helped scientists conclude a half century of effort to find, identify and characterize a mineral that makes up 38 percent of the Earth.

And in doing so, a team of scientists led by Oliver Tschauner, a mineralogist at the University of Las Vegas, clarified the definition of the Earth’s most abundant mineral — a high-density form of magnesium iron silicate, now called Bridgmanite — and defined estimated constraint ranges for its formation. Their research was performed at the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE’s Argonne National Laboratory.

A section of meteorite that landed in Australia in 1879. Bridgmanite was formed and trapped in the dark veins from the intense, quick shock of asteroid collisions. A team of scientists clarified the definition of Bridgmanite, a high-density form of magnesium iron silicate and the Earth's most abundant mineral – using Argonne National Laboratory's Advanced Photon Source. Credit: Tschauneret et al, Science

A section of meteorite that landed in Australia in 1879. Bridgmanite was formed and trapped in the dark veins from the intense, quick shock of asteroid collisions. A team of scientists clarified the definition of Bridgmanite, a high-density form of magnesium iron silicate and the Earth’s most abundant mineral – using Argonne National Laboratory’s Advanced Photon Source.
Credit: Tschauneret et al, Science

The mineral was named after 1964 Nobel laureate and pioneer of high-pressure research Percy Bridgman. The naming does more than fix a vexing gap in scientific lingo; it also will aid our understanding of the deep Earth.

To determine the makeup of the inner layers of the Earth, scientists need to test materials under extreme pressure and temperatures. For decades, scientists have believed a dense perovskite structure makes up 38 percent of the Earth’s volume, and that the chemical and physical properties of Bridgmanite have a large influence on how elements and heat flow through the Earth’s mantle. But since the mineral failed to survive the trip to the surface, no one has been able to test and prove its existence — a requirement for getting a name by the International Mineralogical Association.

Shock-compression that occurs in collisions of asteroid bodies in the solar system create the same hostile conditions of the deep Earth — roughly 2,100 degrees Celsius (3,800 degrees Farenheit) and pressures of about 240,000 times greater than sea-level air pressure. The shock occurs fast enough to inhibit the Bridgmanite breakdown that takes place when it comes under lower pressure, such as the Earth’s surface. Part of the debris from these collisions falls on Earth as meteorites, with the Bridgmanite “frozen” within a shock-melt vein. Previous tests on meteorites using transmission electron microscopy caused radiation damage to the samples and incomplete results.

So the team decided to try a new tactic: non-destructive micro-focused X-rays for diffraction analysis and novel fast-readout area-detector techniques. Tschauner and his colleagues from Caltech and the GeoSoilEnviroCARS, a University of Chicago-operated X-ray beamline at the APS at Argonne National Laboratory, took advantage of the X-rays’ high energy, which gives them the ability to penetrate the meteorite, and their intense brilliance, which leaves little of the radiation behind to cause damage.

The team examined a section of the highly shocked L-chondrite meteorite Tenham, which crashed in Australia in 1879. The GSECARS beamline was optimal for the study because it is one of the nation’s leading locations for conducting high-pressure research.

Bridgmanite grains are rare in the Tenhma meteorite, and they are smaller than 1 micrometer in diameter. Thus the team had to use a strongly focused beam and conduct highly spatially resolved diffraction mapping until an aggregate of Bridgmanite was identified and characterized by structural and compositional analysis.

This first natural specimen of Bridgmanite came with some surprises: It contains an unexpectedly high amount of ferric iron, beyond that of synthetic samples. Natural Bridgmanite also contains much more sodium than most synthetic samples. Thus the crystal chemistry of natural Bridgmanite provides novel crystal chemical insights. This natural sample of Bridgmanite may serve as a complement to experimental studies of deep mantle rocks in the future.

Prior to this study, knowledge about Bridgmanite’s properties has only been based on synthetic samples because it only remains stable below 660 kilometers (410 miles) depth at pressures of above 230 kbar (23 GPa). When it is brought out of the inner Earth, the lower pressures transform it back into less dense minerals. Some scientists believe that some inclusions on diamonds are the marks left by Bridgmanite that changed as the diamonds were unearthed.

The team’s results were published in the November 28 issue of the journal Science as “Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite,” by O. Tschauner at University of Nevada in Las Vegas, N.V.; C. Ma; J.R. Beckett; G.R. Rossman at California Institute of Technology in Pasadena, Calif.; C. Prescher; V.B. Prakapenka at University of Chicago in Chicago, IL.

This research was funded by the U.S. Department of Energy, NASA, and NSF.

Aquilops : Oldest horned dinosaur species in North America

cientists have named the first definite horned dinosaur species from the Early Cretaceous in North America, according to a study published December 10, 2014 in the open-access journal PLOS ONE by Andrew Farke from Raymond M. Alf Museum of Paleontology and colleagues.

This is a an artist's reconstruction of Aquilops in its environment in ancient Montana

This is a an artist’s reconstruction of Aquilops in its environment in ancient Montana
Credit: Copyright Brian Engh, courtesy of Raymond M. Alf Museum of Paleontology; CC-BY

The limited fossil record for neoceratopsian–or horned dinosaurs–from the Early Cretaceous in North America restricts scientists’ ability to reconstruct the early evolution of this group. The authors of this study have discovered a dinosaur skull in Montana that represents the first horned dinosaur from the North American Early Cretaceous that they can identify to the species level. The authors named the dinosaur Aquilops americanus, which exhibits definitive neoceratopsian features and is closely related to similar species in Asia. The skull is comparatively small, measuring 84 mm long, and is distinguished by several features, including a strongly hooked rostral bone, or beak-like structure, and an elongated and sharply pointed cavity over the cheek region. When alive, the authors estimate it was about the size of a crow.

This discovery, combined with neoceratopsian fossil records from elsewhere, allows the authors to support a late Early Cretaceous (~113-105 million years ago) intercontinental migratory event between Asia and North America, as well as support for a complex set of migratory events for organisms between North America and Asia later in the Cretaceous. However, to better reconstruct the timing and mode of these events, additional fieldwork will be necessary.

“Aquilops lived nearly 20 million years before the next oldest horned dinosaur named from North America,” said Andrew Farke. “Even so, we were surprised that it was more closely related to Asian animals than those from North America.”